Esempio n. 1
0
    def run(self):
        file_organizer = Syst.FileOrganizerLocal(
            working_folderpath=self.working_folderpath)

        raw_matrix_train, raw_matrix_test = Utils.split_rows(self.input_matrix)

        X_train_raw, y_train = Utils.split_Xy(raw_matrix_train,
                                              ylabel=self.ylabel)

        feature_processing_pipeline = Pipeline(
            memory=None,  # file_organizer.cached_pipeline_filepath,
            steps=[('impute_features', Clas.FeatureImputer()),
                   ('remove_features', Clas.FeatureRemover()),
                   ('select_features', Clas.Select_Features())])
        X_train_processed = feature_processing_pipeline.fit_transform(
            X_train_raw, y_train)

        predictor = SupervisedClassifier(
            classes=[0, 1],
            hyperparams={
                'algorithm': 'random-forest',
                'hyperparam_strategy': SupervisedClassifier.EXHAUSTIVE_SEARCH,
                'max_iter': 1024
            })

        status = predictor.train(X_train_processed, column_or_1d(y_train))

        X_test_raw, y_test = Utils.split_Xy(raw_matrix_test,
                                            ylabel=self.ylabel)
        X_test_processed = feature_processing_pipeline.transform(X_test_raw)
        y_test_pred_proba = predictor.predict_probability(X_test_processed)[:,
                                                                            1]

        res_df = pd.DataFrame({'actual': y_test, 'predict': y_test_pred_proba})
        res_df.to_csv(file_organizer.get_output_filepath())
        '''TODO'''
        from scripts.LabTestAnalysis.lab_statistics.stats_utils import get_confusion_metrics
        from sklearn.metrics import roc_auc_score

        AUC = roc_auc_score(y_test, y_test_pred_proba)

        sensitivity, specificity, LR_p, LR_n, PPV, NPV = get_confusion_metrics(
            actual_labels=y_test.values,
            predict_probas=y_test_pred_proba,
            threshold=0.5)
        print("AUC: %s, sensitivity: %s, specificity: %s, LR_p: %s, LR_n: %s, PPV: %s, NPV: %s:. " \
                % (AUC, sensitivity, specificity, LR_p, LR_n, PPV, NPV))
Esempio n. 2
0
class BifurcatedSupervisedClassifier:
    BIFURCATION = 'bifurcation'
    EQUAL = '=='
    LTE = '<='
    GTE = '>='
    SUPPORTED_BIFURCATION_STRATEGIES = [EQUAL, GTE, LTE]

    def __init__(self, classes, hyperparams):
        if hyperparams[
                'bifurcation_strategy'] not in BifurcatedSupervisedClassifier.SUPPORTED_BIFURCATION_STRATEGIES:
            raise ValueError('Bifurcation strategy %s not supported.' %
                             hyperparams['bifurcation_strategy'])

        self._classes = classes
        self._hyperparams = hyperparams

        # Note that if we don't pass a copies of hyperparams, then we won't
        # be able to change hyperparams independently in the two classifiers.
        self._sc_true = SupervisedClassifier(classes, hyperparams.copy())
        self._sc_false = SupervisedClassifier(classes, hyperparams.copy())

    def __repr__(self):
        bs = self._build_bifurcation_str()
        classes_str = str(self._classes)
        hyperparams_str = "hyperparams={'algorithm': %s, 'bifurcator': %s, 'bifurcation_strategy': %s, 'bifurcation_threshold': %s, 'random_state': %s}" % (
            self._hyperparams['algorithm'], self._hyperparams['bifurcator'],
            self._hyperparams['bifurcation_strategy'],
            self._hyperparams['bifurcation_value'],
            self._hyperparams['random_state'])
        s = "BifurcatedSupervisedClassifier(%s, %s)" % (classes_str,
                                                        hyperparams_str)
        return s

    __str__ = __repr__

    def _build_bifurcation_str(self):
        args = (self._hyperparams['bifurcator'],
                self._hyperparams['bifurcation_strategy'],
                self._hyperparams['bifurcation_value'])
        return '%s %s %s' % args

    def fetch_bifurcation_masks(self, X):
        log.debug('bifurcator: %s' % self._hyperparams['bifurcator'])
        log.debug('bifurcation_strategy: %s' %
                  BifurcatedSupervisedClassifier.EQUAL)
        log.debug('bifurcation_value: %s' %
                  self._hyperparams['bifurcation_value'])
        if self._hyperparams[
                'bifurcation_strategy'] is BifurcatedSupervisedClassifier.EQUAL:
            true_mask = X[self._hyperparams['bifurcator']].astype(
                float) == self._hyperparams['bifurcation_value']
            false_mask = X[self._hyperparams['bifurcator']].astype(
                float) != self._hyperparams['bifurcation_value']
        elif self._hyperparams[
                'bifurcation_strategy'] is BifurcatedSupervisedClassifier.LTE:
            true_mask = X[self._hyperparams['bifurcator']].astype(
                float) <= self._hyperparams['bifurcation_value']
            false_mask = X[self._hyperparams['bifurcator']].astype(
                float) > self._hyperparams['bifurcation_value']
        elif self._hyperparams[
                'bifurcation_strategy'] is BifurcatedSupervisedClassifier.GTE:
            true_mask = X[self._hyperparams['bifurcator']].astype(
                float) >= self._hyperparams['bifurcation_value']
            false_mask = X[self._hyperparams['bifurcator']].astype(
                float) < self._hyperparams['bifurcation_value']

        log.debug('X[%s].value_counts(): %s' %
                  (self._hyperparams['bifurcator'],
                   X[self._hyperparams['bifurcator']].value_counts()))
        log.debug('true_mask.value_counts(): %s' % true_mask.value_counts())
        log.debug('false_mask.value_counts(): %s' % false_mask.value_counts())
        return true_mask, false_mask

    def description(self):
        args = (self._hyperparams['algorithm'].upper().replace('-', '_'),
                self._build_bifurcation_str(), self._sc_true.description(),
                self._sc_false.description())
        return 'BIFURCATED_%s(%s, true=%s, false=%s)' % args

    def hyperparams(self):
        hyperparams = {
            'model_true': self._sc_true.hyperparams(),
            'model_false': self._sc_false.hyperparams()
        }
        return hyperparams

    def params(self):
        params = {
            'bifurcator': self._hyperparams['bifurcator'],
            'bifurcation_strategy': self._hyperparams['bifurcation_strategy'],
            'bifurcation_value': self._hyperparams['bifurcation_value'],
            'model_true': self._sc_true.description(),
            'model_false': self._sc_false.description()
        }
        return params

    def train(self, X_train, y_train):
        true_mask, false_mask = self.fetch_bifurcation_masks(X_train)

        # Train sc_true.
        X_train_true = X_train[true_mask]
        y_train_true = y_train[true_mask]
        status_true = self._sc_true.train(X_train_true, y_train_true)
        if status_true == SupervisedClassifier.INSUFFICIENT_SAMPLES:
            return status_true

        # Train sc_true.
        X_train_false = X_train[false_mask]
        y_train_false = y_train[false_mask]
        status_false = self._sc_false.train(X_train_false, y_train_false)
        if status_false == SupervisedClassifier.INSUFFICIENT_SAMPLES:
            return status_false

        return SupervisedClassifier.TRAINED

    def _stitch_disjoint_row(self, row):
        if pd.isnull(row['y_pred_true']):
            val = row['y_pred_false']
        else:
            val = row['y_pred_true']
        return val

    def _stitch_prob_0(self, row):
        if pd.isnull(row['y_pred_prob_true_0']):
            val = row['y_pred_prob_false_0']
        else:
            val = row['y_pred_prob_true_0']
        return val

    def _stitch_prob_1(self, row):
        if pd.isnull(row['y_pred_prob_true_1']):
            val = row['y_pred_prob_false_1']
        else:
            val = row['y_pred_prob_true_1']
        return val

    def _predict_label_or_probability(self, X_test, probability=None):
        true_mask, false_mask = self.fetch_bifurcation_masks(X_test)

        # Predict X_test_true.
        X_test_true = X_test[true_mask]
        if probability:
            y_pred_true = self._sc_true.predict_probability(X_test_true)
        else:
            y_pred_true = self._sc_true.predict(X_test_true)
        log.debug('y_pred_true: %s' % y_pred_true)

        # Predict X_test_false.
        X_test_false = X_test[false_mask]
        if probability:
            y_pred_false = self._sc_false.predict_probability(X_test_false)
        else:
            y_pred_false = self._sc_false.predict(X_test_false)
        log.debug('y_pred_false: %s' % y_pred_false)

        # Stitch results.
        if probability:
            column_names = ['y_pred_true_0', 'y_pred_true_1']
        else:
            column_names = ['y_pred_true']
        y_pred_true_df = DataFrame(y_pred_true, index=X_test_true.index, \
                                    columns=column_names)
        log.debug('y_pred_true_df: %s' % y_pred_true_df)
        if probability:
            column_names = ['y_pred_false_0', 'y_pred_false_1']
        else:
            column_names = ['y_pred_false']
        y_pred_false_df = DataFrame(y_pred_false, index=X_test_false.index, \
                                    columns=column_names)
        log.debug('y_pred_false_df: %s' % y_pred_false_df)
        true_mask_df = DataFrame(true_mask)
        mask_plus_true = true_mask_df.merge(y_pred_true_df, how='left', \
                                            left_index=True, right_index=True)
        mask_plus_true_plus_false = mask_plus_true.merge(y_pred_false_df, \
                                how='left', left_index=True, right_index=True)
        mask_plus_true_plus_false['y_pred'] = mask_plus_true_plus_false.apply(
            self._stitch_disjoint_row, axis=1)
        log.debug('mask_plus_false: %s' % mask_plus_true_plus_false)
        y_pred = mask_plus_true_plus_false['y_pred'].values

        return y_pred

    def predict(self, X_test):
        true_mask, false_mask = self.fetch_bifurcation_masks(X_test)

        # Predict X_test_true.
        X_test_true = X_test[true_mask]
        y_pred_true = self._sc_true.predict(X_test_true)
        log.debug('y_pred_true: %s' % y_pred_true)

        # Predict X_test_false.
        X_test_false = X_test[false_mask]
        y_pred_false = self._sc_false.predict(X_test_false)
        log.debug('y_pred_false: %s' % y_pred_false)

        # Stitch results.
        column_names = ['y_pred_true']
        y_pred_true_df = DataFrame(y_pred_true, index=X_test_true.index, \
                                    columns=column_names)
        log.debug('y_pred_true_df: %s' % y_pred_true_df)
        column_names = ['y_pred_false']
        y_pred_false_df = DataFrame(y_pred_false, index=X_test_false.index, \
                                    columns=column_names)
        log.debug('y_pred_false_df: %s' % y_pred_false_df)
        true_mask_df = DataFrame(true_mask)
        mask_plus_true = true_mask_df.merge(y_pred_true_df, how='left', \
                                            left_index=True, right_index=True)
        mask_plus_true_plus_false = mask_plus_true.merge(y_pred_false_df, \
                                how='left', left_index=True, right_index=True)
        mask_plus_true_plus_false['y_pred'] = mask_plus_true_plus_false.apply(
            self._stitch_disjoint_row, axis=1)
        log.debug('mask_plus_false: %s' % mask_plus_true_plus_false)
        y_pred = mask_plus_true_plus_false['y_pred'].values

        return y_pred

    def predict_probability(self, X_test):
        true_mask, false_mask = self.fetch_bifurcation_masks(X_test)

        # Predict X_test_true.
        X_test_true = X_test[true_mask]
        y_pred_prob_true = self._sc_true.predict_probability(X_test_true)
        log.debug('y_pred_prob_true: %s' % y_pred_prob_true)

        # Predict X_test_false.
        X_test_false = X_test[false_mask]
        y_pred_prob_false = self._sc_false.predict_probability(X_test_false)
        log.debug('y_pred_prob_false: %s' % y_pred_prob_false)

        # Stitch results.
        column_names = ['y_pred_prob_true_0', 'y_pred_prob_true_1']
        y_pred_prob_true_df = DataFrame(y_pred_prob_true, index=X_test_true.index, \
                                    columns=column_names)
        log.debug('y_pred_prob_true_df: %s' % y_pred_prob_true_df)
        column_names = ['y_pred_prob_false_0', 'y_pred_prob_false_1']
        y_pred_prob_false_df = DataFrame(y_pred_prob_false, index=X_test_false.index, \
                                    columns=column_names)
        log.debug('y_pred_prob_false_df: %s' % y_pred_prob_false_df)
        true_mask_df = DataFrame(true_mask)
        mask_plus_true = true_mask_df.merge(y_pred_prob_true_df, how='left', \
                                            left_index=True, right_index=True)
        composite = mask_plus_true.merge(y_pred_prob_false_df, \
                                how='left', left_index=True, right_index=True)
        composite['y_pred_prob_0'] = composite.apply(self._stitch_prob_0,
                                                     axis=1)
        composite['y_pred_prob_1'] = composite.apply(self._stitch_prob_1,
                                                     axis=1)
        log.debug('composite: %s' % composite)
        y_pred_prob = composite[['y_pred_prob_0', 'y_pred_prob_1']].values
        log.debug(y_pred_prob)

        return y_pred_prob
Esempio n. 3
0
def run_one_lab_local(lab, lab_type, data_source, version, random_state=0):
    '''

    Input:

    :return:
    '''

    # X_train_raw, y_train = [[1], [2]], [1, 2]
    # X_test_raw, y_test = [[3], [4]], [3, 4]
    file_organizer = syst.FileOrganizerLocal(lab=lab,
                                             lab_type=lab_type,
                                             data_source=data_source,
                                             version=version)

    raw_matrix = file_organizer.get_raw_matrix()

    y_label = 'all_components_normal'

    '''
    TODO: later on pat_ids
    '''
    raw_matrix_train, raw_matrix_test = Utils.split_rows(raw_matrix)

    patIds_train = raw_matrix_train['pat_id'].values.tolist()

    X_train_raw, y_train = Utils.split_Xy(raw_matrix_train, ylabel=y_label)

    redundant_features = ['proc_code', 'num_components', 'num_normal_components', 'abnormal_panel']
    id_features = ['pat_id', 'order_proc_id', 'order_time']

    numeric_features = X_train_raw.columns[~X_train_raw.columns.isin([y_label]+redundant_features+id_features)]

    '''
    Check if the left features are all numeric
    '''
    assert X_train_raw[numeric_features].select_dtypes(exclude=['object']).shape == X_train_raw[numeric_features].shape

    features_by_type = {'redundant_features': redundant_features,
                    'id_features':id_features,
                    'numeric_features':numeric_features,
                    'y_label':y_label}

    '''
    (1) Feature Impute: 
    Imputation of some numerical values depend on prior stats of the same patient, 
        so certain auxiliary columns are still useful
    
    
    (2) Feature Remove:
    Remove auxiliary columns
    
    (3) Feature Selection:
    Only select from numerical columns
    
    '''
    feature_processing_pipeline = Pipeline(
        memory = None, #file_organizer.cached_pipeline_filepath,
        steps = [
             ('impute_features', Cls.FeatureImputer()),
             ('remove_features', Cls.FeatureRemover(features_to_remove=Config.features_to_remove)),
             ('select_features', Cls.Select_Features(random_state=random_state, features_by_type=features_by_type))
             ]
    )

    # feature_engineering_pipeline.set_params()
    X_train_processed = feature_processing_pipeline.fit_transform(X_train_raw, y_train)

    hyperparams = {}
    hyperparams['algorithm'] = 'random-forest'
    predictor = SupervisedClassifier(classes=[0,1], hyperparams=hyperparams)

    '''
    Automatically takes care of tuning hyperparameters via stochastic-search
    '''
    status = predictor.train(X_train_processed, column_or_1d(y_train),
                                       groups = patIds_train)

    logging.INFO('status: %s'%status)

    '''
    Test set
    '''
    X_test_raw, y_test = Utils.split_Xy(raw_matrix_test, ylabel=y_label)
    X_test_processed = feature_processing_pipeline.transform(X_test_raw)
    y_test_pred_proba = predictor.predict_probability(X_test_processed)

    res_df = pd.DataFrame({'actual':y_test,
                           'predict': y_test_pred_proba})
    res_df.to_csv(file_organizer.get_output_filepath(alg=hyperparams['algorithm']))