Esempio n. 1
0
def test_regress():
    """Test regression."""
    # Simple regression example, no weights
    # fit random walk
    y = np.cumsum(np.random.randn(1000, 1), axis=0)
    x = np.arange(1000)[:, None]
    x = np.hstack([x, x**2, x**3])
    [b, z] = regress(y, x)

    # Simple regression example, with weights
    y = np.cumsum(np.random.randn(1000, 1), axis=0)
    w = np.random.rand(*y.shape)
    [b, z] = regress(y, x, w)

    # Downweight 1st half of the data
    y = np.cumsum(np.random.randn(1000, 1), axis=0) + 1000
    w = np.ones(y.shape[0])
    w[:500] = 0
    [b, z] = regress(y, x, w)

    # # Multichannel regression
    y = np.cumsum(np.random.randn(1000, 2), axis=0)
    w = np.ones(y.shape[0])
    [b, z] = regress(y, x, w)
    assert z.shape == (1000, 2)
    assert b.shape == (2, 1)

    # Multichannel regression
    y = np.cumsum(np.random.randn(1000, 2), axis=0)
    w = np.ones(y.shape)
    w[:, 1] == .8
    [b, z] = regress(y, x, w)
    assert z.shape == (1000, 2)
    assert b.shape == (2, 3)
Esempio n. 2
0
import config  # plotting utils

np.random.seed(9)

###############################################################################
# Regression
# =============================================================================

###############################################################################
# Simple regression example, no weights
# -----------------------------------------------------------------------------
# We first try to fit a simple random walk process.
x = np.cumsum(np.random.randn(1000, 1), axis=0)
r = np.arange(1000)[:, None]
r = np.hstack([r, r**2, r**3])
b, y = regress(x, r)

plt.figure(1)
plt.plot(x, label='data')
plt.plot(y, label='fit')
plt.title('No weights')
plt.legend()
plt.show()

###############################################################################
# Downweight 1st half of the data
# -----------------------------------------------------------------------------
# We can also use weights for each time sample. Here we explicitly restrict the
# fit to the second half of the data by setting weights to zero for the first
# 500 samples.
x = np.cumsum(np.random.randn(1000, 1), axis=0) + 1000