Esempio n. 1
0
def test_average_meter(val, n):
    meter = AverageMeter()
    assert meter.val == 0
    assert meter.avg == 0
    assert meter.sum == 0
    assert meter.count == 0
    meter.update(val, n=n)
    assert meter.val == val
    assert meter.avg == val
    assert meter.sum == val * n
    assert meter.count == n
Esempio n. 2
0
def train(manager,
          train_loader,
          test_loader,
          start_iter,
          disp_iter=100,
          save_iter=10000,
          valid_iter=1000,
          use_cuda=False,
          loss=None):
    """train loop"""

    device = torch.device('cpu' if not use_cuda else 'cuda')
    model, optimizer = manager.model, manager.optimizer

    logger.info('Model parameters: {}'.format(get_model_parameters_count(model)))

    if use_cuda:
        model_mem_allocation = torch.cuda.memory_allocated(device)
        logger.info('Model memory allocation: {}'.format(model_mem_allocation))
    else:
        model_mem_allocation = None

    writer = SummaryWriter(manager.log_dir)
    data_time = AverageMeter()
    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    act_mem_activations = AverageMeter()

    ceriterion = loss
    # ensure train_loader enumerates to max_epoch
    max_iterations = train_loader.sampler.nsamples // train_loader.batch_size
    train_loader.sampler.nsamples = train_loader.sampler.nsamples - start_iter
    end = time.time()
    for ind, (x, label) in enumerate(train_loader):
        iteration = ind + 1 + start_iter

        if iteration > max_iterations:
            logger.info('maximum number of iterations reached: {}/{}'.format(iteration, max_iterations))
            break

        if iteration == 40000 or iteration == 60000:
            for param_group in optimizer.param_groups:
                param_group['lr'] *= 0.1

        model.train()

        data_time.update(time.time() - end)
        end = time.time()
        x, label = x.to(device), label.to(device)
        vx, vl = x, label

        score = model(vx)
        loss = ceriterion(score, vl)
        if use_cuda:
            activation_mem_allocation = torch.cuda.memory_allocated(device) - model_mem_allocation
            act_mem_activations.update(activation_mem_allocation, iteration)
            # logger.info('Activations memory allocation: {}'.format(activation_mem_allocation))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        batch_time.update(time.time()-end)
        prec1 = accuracy(score.data, label)

        losses.update(loss.item(), x.size(0))
        top1.update(prec1[0][0], x.size(0))

        if iteration % disp_iter == 0:
            act = ''
            if model_mem_allocation is not None:
                act = 'ActMem {act.val:.3f} ({act.avg:.3f})'.format(act=act_mem_activations)
            logger.info('iteration: [{0}/{1}]\t'
                        'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                        'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                        'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                        'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                        '{act}'
                        .format(iteration, max_iterations,
                                batch_time=batch_time, data_time=data_time,
                                loss=losses, top1=top1, act=act))

        if iteration % disp_iter == 0:
            writer.add_scalar('train_loss', loss.item(), iteration)
            writer.add_scalar('train_acc', prec1[0][0], iteration)
            losses.reset()
            top1.reset()
            data_time.reset()
            batch_time.reset()
            if use_cuda:
                writer.add_scalar('act_mem_allocation', act_mem_activations.avg, iteration)
                act_mem_activations.reset()

        if iteration % valid_iter == 0:
            test_top1, test_loss = validate(model, ceriterion, test_loader, device=device)
            writer.add_scalar('test_loss', test_loss, iteration)
            writer.add_scalar('test_acc', test_top1, iteration)

        if iteration % save_iter == 0:
            manager.save_train_state(iteration)

        end = time.time()

    writer.close()

    # Generate final scalars.json summary file from all generated log_files
    parse_logs(manager.log_dir, os.path.join(manager.log_dir, "scalars.json"))
Esempio n. 3
0
def validate(model, ceriterion, val_loader, device):
    """validation sub-loop"""
    model.eval()

    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()

    end = time.time()
    with torch.no_grad():
        for x, label in val_loader:
            x, label = x.to(device), label.to(device)
            vx, vl = x, label

            score = model(vx)
            loss = ceriterion(score, vl)
            prec1 = accuracy(score.data, label)

            losses.update(loss.item(), x.size(0))
            top1.update(prec1[0][0], x.size(0))

            batch_time.update(time.time() - end)
            end = time.time()

    logger.info('Test: [{0}/{0}]\t'
                'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'.format(len(val_loader),
                                                                  batch_time=batch_time, loss=losses, top1=top1))

    return top1.avg, losses.avg
Esempio n. 4
0
def train(manager,
          train_loader,
          test_loader,
          start_iter,
          disp_iter=100,
          save_iter=10000,
          valid_iter=1000,
          use_cuda=False,
          loss=None):
    """train loop"""

    model, optimizer = manager.model, manager.optimizer

    writer = SummaryWriter(manager.log_dir)
    data_time = AverageMeter()
    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()

    ceriterion = loss
    # ensure train_loader enumerates to max_epoch
    max_iterations = train_loader.sampler.nsamples // train_loader.batch_size
    train_loader.sampler.nsamples = train_loader.sampler.nsamples - start_iter
    end = time.time()
    for ind, (x, label) in enumerate(train_loader):
        iteration = ind + 1 + start_iter

        if iteration == 40000 or iteration == 60000:
            for param_group in optimizer.param_groups:
                param_group['lr'] *= 0.1

        model.train()

        data_time.update(time.time() - end)
        end = time.time()
        if use_cuda:
            x, label = x.cuda(), label.cuda()
        vx, vl = Variable(x), Variable(label)

        score = model(vx)
        loss = ceriterion(score, vl)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        batch_time.update(time.time() - end)
        prec1 = accuracy(score.data, label)

        losses.update(loss.item(), x.size(0))
        top1.update(prec1[0][0], x.size(0))

        if iteration % disp_iter == 0:
            logger.info('iteration: [{0}/{1}]\t'
                        'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                        'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                        'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                        'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'.format(
                            iteration,
                            max_iterations,
                            batch_time=batch_time,
                            data_time=data_time,
                            loss=losses,
                            top1=top1))

        if iteration % disp_iter == 0:
            writer.add_scalar('train_loss', loss.item(), iteration)
            writer.add_scalar('train_acc', prec1[0][0], iteration)
            losses.reset()
            top1.reset()
            data_time.reset()
            batch_time.reset()

        if iteration % valid_iter == 0:
            test_top1, test_loss = validate(model, ceriterion, test_loader,
                                            use_cuda)
            writer.add_scalar('test_loss', test_loss, iteration)
            writer.add_scalar('test_acc', test_top1, iteration)

        if iteration % save_iter == 0:
            manager.save_train_state(iteration)

        end = time.time()

    writer.close()

    # Generate final scalars.json summary file from all generated log_files
    parse_logs(manager.log_dir, os.path.join(manager.log_dir, "scalars.json"))
Esempio n. 5
0
def validate(model, ceriterion, val_loader, use_cuda):
    """validation sub-loop"""
    model.eval()

    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()

    end = time.time()
    for ind, (x, label) in enumerate(val_loader):
        if use_cuda:
            x, label = x.cuda(), label.cuda()
        vx, vl = Variable(x, volatile=True), Variable(label, volatile=True)

        score = model(vx)
        loss = ceriterion(score, vl)
        prec1 = accuracy(score.data, label)

        losses.update(loss.item(), x.size(0))
        top1.update(prec1[0][0], x.size(0))

        batch_time.update(time.time() - end)
        end = time.time()

    logger.info('Test: [{0}/{0}]\t'
                'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'.format(
                    len(val_loader),
                    batch_time=batch_time,
                    loss=losses,
                    top1=top1))

    return top1.avg, losses.avg