# X_train = scaler.fit_transform(X_train.T).T # X_val = scaler.transform(X_val.T).T ################### TRAIN THE LSTM MODELS ################### in_shape = 3 * N out_shape = 2 * N # Build training and validation sets. train_data = core_1.build_lstm_dataloader(X_train, PQ_meas_tr, V_meas_tr, x_i, k_nn, batch_size) val_data = core_1.build_lstm_dataloader(X_val, PQ_meas_val, V_meas_val, x_i, k_nn, batch_size) # Initialize and train the models. model = lstm.LSTM(in_shape, hidden_layer_size, out_shape, batch_size) model, val_loss = lstm_utils.train(model, train_data, val_data, lr=1e-3, epochs=lstm_epoch_max, l2=0.) ts = ts_val[k_nn - 1:-1] ################### VISUALIZE RESULTS ON VALIDATION SET ################### # Run inference. S, y_pred, y_true = lstm.predict(model, val_data, batch_size) fig = plt.figure(figsize=(10, 5)) gs = fig.add_gridspec(3, 4)
def run(x_i, sensor_class, seed): ####################### PARAMETERS ####################### # General parameters. dataset = 'cigre13' sc_train = sensor_class # Training (12h), validation (6h), testing (6h) splits. ts_train = np.arange(0, 12 * 3600) ts_val = np.arange(12 * 3600, 18 * 3600) ts_test = np.arange(18 * 3600, 24 * 3600 - 1) T_train, T_val, T_test = len(ts_train), len(ts_val), len(ts_test) # Feedforward neural network parameters. k_nn = 10 nn_epoch_max = 10 hidden_shape = [128, 64] # LSTM parameters. k_lstm = 50 hidden_layer_size = 64 lstm_epoch_max = 10 batch_size = 64 # Least squares model. tau = 1000 freq = 50 ####################### SET RANDOM SEED ####################### torch.manual_seed(seed) np.random.seed(seed) ####################### LOAD TRUE DATA ####################### # Load true load flow. V_org, I_org, P_org, Q_org, current_idx = load_true_data(dataset) # Remove slack measurements and create measurement matrices used in Model 2. V_org_magn = np.abs(V_org[1:]) N, T = V_org_magn.shape # Create measurement delta matrix to be used as target. dV_org_magn = np.diff(V_org_magn, axis=1) ################### GENERATE NOISY DATA FOR TRAINING ################### # Add noise to load flow data. V_meas, _, P_meas, Q_meas, std_abs, std_ang, std_re, std_im, _, _ = \ simulate_noisy_meas(sc_train, V_org, I_org, current_idx) # Remove slack measurements and create measurement matrices used in Model 2. V_meas = V_meas[1:] PQ_meas = np.vstack((P_meas[1:], Q_meas[1:])) ################### SELECT TYPE OF COEFFICIENT ################### # Select type of dependent variable. V_meas = np.abs(V_meas) # Load true coefficients. coefficients = load_coefficients(dataset) Kp_true = coefficients['vmagn_p'][x_i - 1, x_i - 1] Kq_true = coefficients['vmagn_q'][x_i - 1, x_i - 1] ################### SPLIT TRAINING, VALIDATION AND TESTING DATA ################### # Train matrices V_meas_tr = V_meas[:, ts_train] PQ_meas_tr = PQ_meas[:, ts_train] X_train = np.vstack((V_meas_tr, PQ_meas_tr)) # Validation matrices. V_meas_val = V_meas[:, ts_val] PQ_meas_val = PQ_meas[:, ts_val] X_val = np.vstack((V_meas_val, PQ_meas_val)) ################### PRE-PROCESS DATA ################### # Normalize training input data. norm_scaler = MinMaxScaler() X_train = norm_scaler.fit_transform(X_train.T).T X_val = norm_scaler.transform(X_val.T).T ################### FEEDFORWARD NEURAL NET ################### print('Training feedforward neural net...') in_shape = 3 * N * k_nn out_shape = 2 * N # Build training, validation, and test sets. train_data = nn.build_training_dataloader(X_train, PQ_meas_tr, V_meas_tr, x_i, k_nn) val_data = nn.build_training_dataloader(X_val, PQ_meas_val, V_meas_val, x_i, k_nn) # Initialize and train the models. nn_model = nn.FeedForward(in_shape, hidden_shape, out_shape, k_nn) nn_model, _ = fc.nn.train(nn_model, train_data, val_data, epochs=nn_epoch_max) ################### LSTM NEURAL NET ################### print('\nTraining LSTMs...') in_shape = 3 * N out_shape = 2 * N # Build training and validation sets. train_data = lstm.build_dataloader(X_train, PQ_meas_tr, V_meas_tr, x_i, k_lstm, batch_size) val_data = lstm.build_dataloader(X_val, PQ_meas_val, V_meas_val, x_i, k_lstm, batch_size) # Initialize and train the models. lstm_model = lstm.LSTM(in_shape, hidden_layer_size, out_shape, batch_size) lstm_model, _ = fc.lstm.train(lstm_model, train_data, val_data, lr=1e-3, epochs=lstm_epoch_max, l2=0.) for sc_test in [0., 0.2, 0.5, 1.0]: folder = f'cross_trained_{dataset}_train{sc_train}_test{sc_test}' logger = ComparisonLogger(folder) ################### GENERATE NOISY DATA FOR TESTING ################### # Add noise to load flow data. V_meas, _, P_meas, Q_meas, std_abs, std_ang, std_re, std_im, _, _ = \ simulate_noisy_meas(sc_test, V_org, I_org, current_idx) # Remove slack measurements and create measurement matrices used in Model 2. V_meas = V_meas[1:] PQ_meas = np.vstack((P_meas[1:], Q_meas[1:])) PQ_meas_bias = np.vstack((PQ_meas, np.ones(T))) ################### SELECT TYPE OF COEFFICIENT ################### # Select type of dependent variable. V_meas = np.abs(V_meas) dPQ_meas = np.diff(PQ_meas, axis=1) ################### SPLIT TESTING DATA ################### # Testing matrices. V_meas_test = V_meas[:, ts_test] PQ_meas_test = PQ_meas[:, ts_test] X_test = np.vstack((V_meas_test, PQ_meas_test)) PQ_meas_bias_test = PQ_meas_bias[:, ts_test] dPQ_meas_test = dPQ_meas[:, ts_test] ################### PRE-PROCESS DATA ################### # Normalize training input data. X_test = norm_scaler.transform(X_test.T).T ################### INFERENCE WITH PRE-TRAINED MODELS ################### # Feedforward model. test_data = nn.build_testing_dataloader(X_test, PQ_meas_test, V_meas_test, x_i, k_nn) S_nn, y_pred_nn, _ = nn_model.predict(test_data) ts_nn = np.arange(k_nn-1, T_test-1) # LSTM model. test_data = lstm.build_dataloader(X_test, PQ_meas_test, V_meas_test, x_i, k_lstm, batch_size) S_lstm, y_pred_lstm, _ = lstm.predict(lstm_model, test_data, batch_size) ts_lstm = np.arange(k_nn-1, T_test-1) ################### LEAST SQUARES MODEL ################### print('\tLeast squares estimation...') which_i = np.array([x_i]) valid_timesteps = np.ones(T_test - 1).astype(np.bool) use_sigma = False k_pcr = None qr = False S_ls, ts_ls, _ = linear.linear_model(V_meas_test, PQ_meas_bias_test, use_sigma, tau, freq, which_i, k_pcr, qr, valid_timesteps) # Remove bias terms. S_ls = {a: b[:-1] for a, b in S_ls.items()} y_pred_ls = fc.linear.lm_estimate_dVmagn(dPQ_meas_test[:, ts_ls], S_ls, None, False) S_ls, y_pred_ls = S_ls[x_i], y_pred_ls[x_i] ################### VISUALIZE RESULTS ON TEST SET ################### ts_all = ts_test[ts_ls] ts_all_hour = ts_all / 3600 x_nn = ts_ls - k_nn + 1 x_lstm = ts_ls - k_lstm + 1 fig = plt.figure(figsize=(10, 5)) gs = fig.add_gridspec(3, 4, hspace=0.05) # Plot Kp coefficients. ax = fig.add_subplot(gs[0, :-1]) ax.plot(ts_all_hour, Kp_true[ts_all], label='True') ax.plot(ts_all_hour, S_ls[x_i - 1], label='LS') ax.plot(ts_all_hour, S_nn[x_i - 1, x_nn], label='NN') ax.plot(ts_all_hour, S_lstm[x_i - 1, x_lstm], label='LSTM') ax.set_ylabel(r'$\partial |V_{%d}|/\partial P_{%d}$' % (x_i, x_i)) ax.set_xticks([]) # Plot Kq coefficients. ax = fig.add_subplot(gs[1, :-1]) ax.plot(ts_all_hour, Kq_true[ts_all], label='True') ax.plot(ts_all_hour, S_ls[x_i - 1 + N], label='LS') ax.plot(ts_all_hour, S_nn[x_i - 1 + N, x_nn], label='NN') ax.plot(ts_all_hour, S_lstm[x_i - 1 + N, x_lstm], label='LSTM') ax.legend(loc='upper right') ax.set_ylabel(r'$\partial |V_{%d}|/\partial Q_{%d}$' % (x_i, x_i)) ax.set_xticks([]) # Plot dV. ax = fig.add_subplot(gs[2, :-1]) ax.plot(ts_all_hour[::2], dV_org_magn[x_i - 1, ts_all[::2]], label='True') ax.plot(ts_all_hour[::2], y_pred_ls[::2], label='LS') ax.plot(ts_all_hour[::2], y_pred_nn[x_nn[::2]], label='NN') ax.plot(ts_all_hour[::2], y_pred_lstm[x_lstm[::2]], label='LSTM') ax.set_ylabel(r'$\Delta |V_{%d}|$' % (x_i)) ax.set_xlabel('Time (h)') # Plot Kp errors. ax = fig.add_subplot(gs[0, -1]) e_ls = 100 * norm_e(Kp_true[ts_all], S_ls[x_i - 1]) e_nn = 100 * norm_e(Kp_true[ts_all], S_nn[x_i - 1, x_nn]) e_lstm = 100 * norm_e(Kp_true[ts_all], S_lstm[x_i - 1, x_lstm]) ax.boxplot([e_ls, e_nn, e_lstm], labels=['LS', 'NN', 'LSTM']) ax.set_xticks([]) # Plot Kq errors. ax = fig.add_subplot(gs[1, -1]) e_ls = 100 * norm_e(Kq_true[ts_all], S_ls[x_i - 1 + N]) e_nn = 100 * norm_e(Kq_true[ts_all], S_nn[x_i - 1 + N, x_nn]) e_lstm = 100 * norm_e(Kq_true[ts_all], S_lstm[x_i - 1 + N, x_lstm]) ax.boxplot([e_ls, e_nn, e_lstm], labels=['LS', 'NN', 'LSTM']) ax.set_ylabel('Normalized error [%]') ax.set_xticks([]) # Plot d|V| errors. ax = fig.add_subplot(gs[2, -1]) e_ls = 100 * norm_e(dV_org_magn[x_i - 1, ts_all], y_pred_ls) e_nn = 100 * norm_e(dV_org_magn[x_i - 1, ts_all], y_pred_nn[x_nn]) e_lstm = 100 * norm_e(dV_org_magn[x_i - 1, ts_all], y_pred_lstm[x_lstm]) ax.boxplot([e_ls, e_nn, e_lstm], labels=['LS', 'NN', 'LSTM'], showfliers=False) gs.tight_layout(fig) plt.show() logger.save_fig(fig, f'x_{x_i}_s{seed}.png') print('Done!')