def verify_mimc_proof(inp, steps, round_constants, output, proof): p_root, d_root, b_root, l_root, branches, fri_proof = proof start_time = time.time() assert steps <= 2**32 // extension_factor assert is_a_power_of_2(steps) and is_a_power_of_2(len(round_constants)) assert len(round_constants) < steps precision = steps * extension_factor # Get (steps)th root of unity G2 = f.exp(7, (modulus-1)//precision) skips = precision // steps # Gets the polynomial representing the round constants skips2 = steps // len(round_constants) constants_mini_polynomial = fft(round_constants, modulus, f.exp(G2, extension_factor * skips2), inv=True) # Verifies the low-degree proofs assert verify_low_degree_proof(l_root, G2, fri_proof, steps * 2, modulus, exclude_multiples_of=extension_factor) # Performs the spot checks k1 = int.from_bytes(blake(p_root + d_root + b_root + b'\x01'), 'big') k2 = int.from_bytes(blake(p_root + d_root + b_root + b'\x02'), 'big') k3 = int.from_bytes(blake(p_root + d_root + b_root + b'\x03'), 'big') k4 = int.from_bytes(blake(p_root + d_root + b_root + b'\x04'), 'big') samples = spot_check_security_factor positions = get_pseudorandom_indices(l_root, precision, samples, exclude_multiples_of=extension_factor) last_step_position = f.exp(G2, (steps - 1) * skips) for i, pos in enumerate(positions): x = f.exp(G2, pos) x_to_the_steps = f.exp(x, steps) p_of_x = verify_branch(p_root, pos, branches[i*5]) p_of_g1x = verify_branch(p_root, (pos+skips)%precision, branches[i*5 + 1]) d_of_x = verify_branch(d_root, pos, branches[i*5 + 2]) b_of_x = verify_branch(b_root, pos, branches[i*5 + 3]) l_of_x = verify_branch(l_root, pos, branches[i*5 + 4]) zvalue = f.div(f.exp(x, steps) - 1, x - last_step_position) k_of_x = f.eval_poly_at(constants_mini_polynomial, f.exp(x, skips2)) # Check transition constraints C(P(x)) = Z(x) * D(x) assert (p_of_g1x - p_of_x ** 3 - k_of_x - zvalue * d_of_x) % modulus == 0 # Check boundary constraints B(x) * Q(x) + I(x) = P(x) interpolant = f.lagrange_interp_2([1, last_step_position], [inp, output]) zeropoly2 = f.mul_polys([-1, 1], [-last_step_position, 1]) assert (p_of_x - b_of_x * f.eval_poly_at(zeropoly2, x) - f.eval_poly_at(interpolant, x)) % modulus == 0 # Check correctness of the linear combination assert (l_of_x - d_of_x - k1 * p_of_x - k2 * p_of_x * x_to_the_steps - k3 * b_of_x - k4 * b_of_x * x_to_the_steps) % modulus == 0 print('Verified %d consistency checks' % spot_check_security_factor) print('Verified STARK in %.4f sec' % (time.time() - start_time)) return True
def verify_mimc_proof(inp, logsteps, logprecision, output, proof): p_root, d_root, branches, p_proof, d_proof = proof start_time = time.time() steps = 2**logsteps precision = 2**logprecision # Get (steps)th root of unity root_of_unity = pow(7, (modulus - 1) // precision, modulus) skips = precision // steps # Verifies the low-degree proofs assert verify_low_degree_proof(p_root, root_of_unity, p_proof, steps) assert verify_low_degree_proof(d_root, root_of_unity, d_proof, steps * 2) # Performs the spot checks samples = spot_check_security_factor // (logprecision - logsteps) positions = get_indices(blake(p_root + d_root), precision - skips, samples) for i, pos in enumerate(positions): # Check C(P(x)) = Z(x) * D(x) x = pow(root_of_unity, pos, modulus) p_of_x = verify_branch(p_root, pos, branches[i * 3]) p_of_rx = verify_branch(p_root, pos + skips, branches[i * 3 + 1]) d_of_x = verify_branch(d_root, pos, branches[i * 3 + 2]) zvalue = f.div( pow(x, steps, modulus) - 1, x - pow(root_of_unity, (steps - 1) * skips, modulus)) assert (p_of_rx - p_of_x**3 - x - zvalue * d_of_x) % modulus == 0 print('Verified %d consistency checks' % (spot_check_security_factor // (logprecision - logsteps))) print('Verified STARK in %.4f sec' % (time.time() - start_time)) return True
def get_indices(seed, modulus, count): assert modulus < 2**24 data = seed while len(data) < 4 * count: data += blake(data[-32:]) return [ int.from_bytes(data[i:i + 4], 'big') % modulus for i in range(0, count * 4, 4) ]
def get_pseudorandom_indices(seed, modulus, count, exclude_multiples_of=0): assert modulus < 2**24 data = seed while len(data) < 4 * count: data += blake(data[-32:]) if exclude_multiples_of == 0: return [ int.from_bytes(data[i:i + 4], 'big') % modulus for i in range(0, count * 4, 4) ] else: real_modulus = modulus * (exclude_multiples_of - 1) // exclude_multiples_of o = [ int.from_bytes(data[i:i + 4], 'big') % real_modulus for i in range(0, count * 4, 4) ] return [x + 1 + x // (exclude_multiples_of - 1) for x in o]
def verify_mimc_proof(inp, logsteps, logprecision, output, proof): p_root, d_root, k_root, l_root, branches, fri_proof = proof start_time = time.time() steps = 2**logsteps precision = 2**logprecision # Get (steps)th root of unity root_of_unity = pow(7, (modulus-1)//precision, modulus) skips = precision // steps # Verifies the low-degree proofs assert verify_low_degree_proof(l_root, root_of_unity, fri_proof, steps * 2) # Performs the spot checks k = int.from_bytes(blake(p_root + d_root), 'big') samples = spot_check_security_factor // (logprecision - logsteps) positions = get_indices(l_root, precision - skips, samples) for i, pos in enumerate(positions): # Check C(P(x)) = Z(x) * D(x) x = pow(root_of_unity, pos, modulus) p_of_x = verify_branch(p_root, pos, branches[i*5]) p_of_rx = verify_branch(p_root, pos+skips, branches[i*5 + 1]) d_of_x = verify_branch(d_root, pos, branches[i*5 + 2]) k_of_x = verify_branch(k_root, pos, branches[i*5 + 3]) l_of_x = verify_branch(l_root, pos, branches[i*5 + 4]) zvalue = f.div(pow(x, steps, modulus) - 1, x - pow(root_of_unity, (steps - 1) * skips, modulus)) assert (p_of_rx - p_of_x ** 3 - k_of_x - zvalue * d_of_x) % modulus == 0 assert (l_of_x - d_of_x - k * p_of_x * pow(x, steps, modulus)) % modulus == 0 print('Verified %d consistency checks' % (spot_check_security_factor // (logprecision - logsteps))) print('Verified STARK in %.4f sec' % (time.time() - start_time)) print('Note: this does not include verifying the Merkle root of the constants tree') print('This can be done by every client once as a precomputation') return True
def mk_mimc_proof(inp, logsteps, logprecision): start_time = time.time() assert logsteps < logprecision <= 32 steps = 2**logsteps precision = 2**logprecision # Root of unity such that x^precision=1 root = pow(7, (modulus-1)//precision, modulus) # Root of unity such that x^skips=1 skips = precision // steps subroot = pow(root, skips) # Powers of the root of unity, our computational trace will be # along the sequence of roots of unity xs = get_power_cycle(subroot) # Generate the computational trace constants = [] values = [inp] k = 1 for i in range(steps-1): values.append((values[-1]**3 + (k ^ 1)) % modulus) constants.append(k ^ 1) k = (k * 9) & ((1 << 256) - 1) constants.append(0) print('Done generating computational trace') # Interpolate the computational trace into a polynomial values_polynomial = fft(values, modulus, subroot, inv=True) constants_polynomial = fft(constants, modulus, subroot, inv=True) print('Converted computational steps and constants into a polynomial') # Create the composed polynomial such that # C(P(x), P(rx), K(x)) = P(rx) - P(x)**3 - K(x) term1 = multiply_base(values_polynomial, subroot) p_evaluations = fft(values_polynomial, modulus, root) term2 = fft([pow(x, 3, modulus) for x in p_evaluations], modulus, root, inv=True)[:len(values_polynomial) * 3 - 2] c_of_values = f.sub_polys(f.sub_polys(term1, term2), constants_polynomial) print('Computed C(P, K) polynomial') # Compute D(x) = C(P(x), P(rx), K(x)) / Z(x) # Z(x) = (x^steps - 1) / (x - x_atlast_step) d = divide_by_xnm1(f.mul_polys(c_of_values, [modulus-xs[steps-1], 1]), steps) # assert f.mul_polys(d, z) == c_of_values print('Computed D polynomial') # Evaluate D and K across the entire subgroup d_evaluations = fft(d, modulus, root) k_evaluations = fft(constants_polynomial, modulus, root) print('Evaluated P, D and K') # Compute their Merkle roots p_mtree = merkelize(p_evaluations) d_mtree = merkelize(d_evaluations) k_mtree = merkelize(k_evaluations) print('Computed hash root') # Based on the hashes of P and D, we select a random linear combination # of P * x^steps and D, and prove the low-degreeness of that, instead of proving # the low-degreeness of P and D separately k = int.from_bytes(blake(p_mtree[1] + d_mtree[1]), 'big') lincomb = f.add_polys(d, f.mul_by_const([0] * steps + values_polynomial, k)) l_evaluations = fft(lincomb, modulus, root) l_mtree = merkelize(l_evaluations) print('Computed random linear combination') # Do some spot checks of the Merkle tree at pseudo-random coordinates branches = [] samples = spot_check_security_factor // (logprecision - logsteps) positions = get_indices(l_mtree[1], precision - skips, samples) for pos in positions: branches.append(mk_branch(p_mtree, pos)) branches.append(mk_branch(p_mtree, pos + skips)) branches.append(mk_branch(d_mtree, pos)) branches.append(mk_branch(k_mtree, pos)) branches.append(mk_branch(l_mtree, pos)) print('Computed %d spot checks' % samples) # Return the Merkle roots of P and D, the spot check Merkle proofs, # and low-degree proofs of P and D o = [p_mtree[1], d_mtree[1], k_mtree[1], l_mtree[1], branches, prove_low_degree(lincomb, root, l_evaluations, steps * 2)] print("STARK computed in %.4f sec" % (time.time() - start_time)) return o
def mk_mimc_proof(inp, steps, round_constants): start_time = time.time() # Some constraints to make our job easier assert steps <= 2**32 // extension_factor assert is_a_power_of_2(steps) and is_a_power_of_2(len(round_constants)) assert len(round_constants) < steps precision = steps * extension_factor # Root of unity such that x^precision=1 G2 = f.exp(7, (modulus-1)//precision) # Root of unity such that x^steps=1 skips = precision // steps G1 = f.exp(G2, skips) # Powers of the higher-order root of unity xs = get_power_cycle(G2, modulus) last_step_position = xs[(steps-1)*extension_factor] # Generate the computational trace computational_trace = [inp] for i in range(steps-1): computational_trace.append( (computational_trace[-1]**3 + round_constants[i % len(round_constants)]) % modulus ) output = computational_trace[-1] print('Done generating computational trace') # Interpolate the computational trace into a polynomial P, with each step # along a successive power of G1 computational_trace_polynomial = fft(computational_trace, modulus, G1, inv=True) p_evaluations = fft(computational_trace_polynomial, modulus, G2) print('Converted computational steps into a polynomial and low-degree extended it') skips2 = steps // len(round_constants) constants_mini_polynomial = fft(round_constants, modulus, f.exp(G1, skips2), inv=True) constants_polynomial = [0 if i % skips2 else constants_mini_polynomial[i//skips2] for i in range(steps)] constants_mini_extension = fft(constants_mini_polynomial, modulus, f.exp(G2, skips2)) print('Converted round constants into a polynomial and low-degree extended it') # Create the composed polynomial such that # C(P(x), P(g1*x), K(x)) = P(g1*x) - P(x)**3 - K(x) c_of_p_evaluations = [(p_evaluations[(i+extension_factor)%precision] - f.exp(p_evaluations[i], 3) - constants_mini_extension[i % len(constants_mini_extension)]) % modulus for i in range(precision)] print('Computed C(P, K) polynomial') # Compute D(x) = C(P(x), P(g1*x), K(x)) / Z(x) # Z(x) = (x^steps - 1) / (x - x_atlast_step) z_num_evaluations = [xs[(i * steps) % precision] - 1 for i in range(precision)] z_num_inv = f.multi_inv(z_num_evaluations) z_den_evaluations = [xs[i] - last_step_position for i in range(precision)] d_evaluations = [cp * zd * zni % modulus for cp, zd, zni in zip(c_of_p_evaluations, z_den_evaluations, z_num_inv)] print('Computed D polynomial') # Compute interpolant of ((1, input), (x_atlast_step, output)) interpolant = f.lagrange_interp_2([1, last_step_position], [inp, output]) i_evaluations = [f.eval_poly_at(interpolant, x) for x in xs] zeropoly2 = f.mul_polys([-1, 1], [-last_step_position, 1]) inv_z2_evaluations = f.multi_inv([f.eval_poly_at(zeropoly2, x) for x in xs]) b_evaluations = [((p - i) * invq) % modulus for p, i, invq in zip(p_evaluations, i_evaluations, inv_z2_evaluations)] print('Computed B polynomial') # Compute their Merkle roots p_mtree = merkelize(p_evaluations) d_mtree = merkelize(d_evaluations) b_mtree = merkelize(b_evaluations) print('Computed hash root') # Based on the hashes of P, D and B, we select a random linear combination # of P * x^steps, P, B * x^steps, B and D, and prove the low-degreeness of that, # instead of proving the low-degreeness of P, B and D separately k1 = int.from_bytes(blake(p_mtree[1] + d_mtree[1] + b_mtree[1] + b'\x01'), 'big') k2 = int.from_bytes(blake(p_mtree[1] + d_mtree[1] + b_mtree[1] + b'\x02'), 'big') k3 = int.from_bytes(blake(p_mtree[1] + d_mtree[1] + b_mtree[1] + b'\x03'), 'big') k4 = int.from_bytes(blake(p_mtree[1] + d_mtree[1] + b_mtree[1] + b'\x04'), 'big') # Compute the linear combination. We don't even both calculating it in # coefficient form; we just compute the evaluations G2_to_the_steps = f.exp(G2, steps) powers = [1] for i in range(1, precision): powers.append(powers[-1] * G2_to_the_steps % modulus) l_evaluations = [(d_evaluations[i] + p_evaluations[i] * k1 + p_evaluations[i] * k2 * powers[i] + b_evaluations[i] * k3 + b_evaluations[i] * powers[i] * k4) % modulus for i in range(precision)] l_mtree = merkelize(l_evaluations) print('Computed random linear combination') # Do some spot checks of the Merkle tree at pseudo-random coordinates, excluding # multiples of `extension_factor` branches = [] samples = spot_check_security_factor positions = get_pseudorandom_indices(l_mtree[1], precision, samples, exclude_multiples_of=extension_factor) for pos in positions: branches.append(mk_branch(p_mtree, pos)) branches.append(mk_branch(p_mtree, (pos + skips) % precision)) branches.append(mk_branch(d_mtree, pos)) branches.append(mk_branch(b_mtree, pos)) branches.append(mk_branch(l_mtree, pos)) print('Computed %d spot checks' % samples) # Return the Merkle roots of P and D, the spot check Merkle proofs, # and low-degree proofs of P and D o = [p_mtree[1], d_mtree[1], b_mtree[1], l_mtree[1], branches, prove_low_degree(l_evaluations, G2, steps * 2, modulus, exclude_multiples_of=extension_factor)] print("STARK computed in %.4f sec" % (time.time() - start_time)) return o
def mk_mimc_proof(inp, logsteps, logprecision): start_time = time.time() assert logsteps < logprecision <= 32 steps = 2**logsteps precision = 2**logprecision # Root of unity such that x^precision=1 root = pow(7, (modulus - 1) // precision, modulus) # Root of unity such that x^skips=1 skips = precision // steps subroot = pow(root, skips) # Powers of the root of unity, our computational trace will be # along the sequence of roots of unity xs = get_power_cycle(subroot) # Generate the computational trace values = [inp] for i in range(steps - 1): values.append((values[-1]**3 + xs[i]) % modulus) print('Done generating computational trace') # Interpolate the computational trace into a polynomial # values_polynomial = f.lagrange_interp(values, [pow(subroot, i, modulus) for i in range(steps)]) values_polynomial = fft(values, modulus, subroot, inv=True) print('Computed polynomial') #for x, v in zip(xs, values): # assert f.eval_poly_at(values_polynomial, x) == v # Create the composed polynomial such that # C(P(x), P(rx)) = P(rx) - P(x)**3 - x term1 = multiply_base(values_polynomial, subroot) term2 = fft( [pow(x, 3, modulus) for x in fft(values_polynomial, modulus, root)], modulus, root, inv=True)[:len(values_polynomial) * 3 - 2] c_of_values = f.sub_polys(f.sub_polys(term1, term2), [0, 1]) print('Computed C(P) polynomial') # Compute D(x) = C(P(x)) / Z(x) # Z(x) = (x^steps - 1) / (x - x_atlast_step) d = divide_by_xnm1(f.mul_polys(c_of_values, [modulus - xs[steps - 1], 1]), steps) # assert f.mul_polys(d, z) == c_of_values print('Computed D polynomial') # Evaluate P and D across the entire subgroup p_evaluations = fft(values_polynomial, modulus, root) d_evaluations = fft(d, modulus, root) print('Evaluated P and D') # Compute their Merkle roots p_mtree = merkelize(p_evaluations) d_mtree = merkelize(d_evaluations) print('Computed hash root') # Do some spot checks of the Merkle tree at pseudo-random coordinates branches = [] samples = spot_check_security_factor // (logprecision - logsteps) positions = get_indices(blake(p_mtree[1] + d_mtree[1]), precision - skips, samples) for pos in positions: branches.append(mk_branch(p_mtree, pos)) branches.append(mk_branch(p_mtree, pos + skips)) branches.append(mk_branch(d_mtree, pos)) print('Computed %d spot checks' % samples) while len(d) < steps * 2: d += [0] # Return the Merkle roots of P and D, the spot check Merkle proofs, # and low-degree proofs of P and D o = [ p_mtree[1], d_mtree[1], branches, prove_low_degree(values_polynomial, root, p_evaluations, steps), prove_low_degree(d, root, d_evaluations, steps * 2) ] print("STARK computed in %.4f sec" % (time.time() - start_time)) return o