class MoneyModel(Model): """A model with some number of agents.""" def __init__(self, N, width, height): self.num_agents = N self.schedule = RandomActivation(self) self.grid = MultiGrid(width, height, True) self.running = True # Create agents for i in range(self.num_agents): a = MoneyAgent(i, self) self.schedule.add(a) # Add the agent to a random grid cell x = random.randrange(self.grid.width) y = random.randrange(self.grid.height) self.grid.place_agent(a, (x, y)) self.datacollector = DataCollector( model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": lambda a: a.wealth}) def move(self): possible_steps = self.model.grid.get_neighborhood(self.pos, moore=True, include_center=False) new_position = random.choice(possible_steps) self.model.grid.move_agent(self, new_position) def step(self): '''Advance the model by one step.''' # print("New step.") self.datacollector.collect(self) self.schedule.step()
class MoneyModel(Model): """A simple model of an economy where agents exchange currency at random. All the agents begin with one unit of currency, and each time step can give a unit of currency to another agent. Note how, over time, this produces a highly skewed distribution of wealth. """ def __init__(self, N, width, height): self.num_agents = N self.running = True self.grid = MultiGrid(height, width, True) self.schedule = RandomActivation(self) self.datacollector = DataCollector( model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": lambda a: a.wealth} ) # Create agents for i in range(self.num_agents): a = MoneyAgent(i, self) self.schedule.add(a) # Add the agent to a random grid cell x = random.randrange(self.grid.width) y = random.randrange(self.grid.height) self.grid.place_agent(a, (x, y)) def step(self): self.datacollector.collect(self) self.schedule.step() def run_model(self, n): for i in range(n): self.step()
class miModelo(Model): def __init__(self, N, seed=None): self.current_id = 0 self.running = True # Definimos el schedule para hacer la ejecucion en orden aleatorio self.schedule = RandomActivation(self) #Definimos el grid de tamanio 10x10 y sin fronteras flexibles self.grid = MultiGrid(10, 10, False) for i in range(N): a = miAgente(self.next_id(), self, 5) self.schedule.add(a) pos_x = self.random.randint(0, 9) pos_y = self.random.randint(0, 9) self.grid.place_agent(a, [pos_x, pos_y]) self.datacollector = DataCollector(model_reporters={ "Nagentes": contarAgentes, "NumberTicks": getCurrentTick }) def step(self): self.schedule.step() self.datacollector.collect(self) # Paramos la simulacion cuando hay menos de dos agentes if self.schedule.get_agent_count() < 2: self.running = False
class CollisionModel(Model): def __init__(self, N, width, height, init_value): self.num_agents = N self.init_value = init_value self.grid = MultiGrid(width, height, True) self.schedule = BaseScheduler(self) # Create Agents for i in range(self.num_agents): a = CollisionAgent(i, self) self.schedule.add(a) # Add the agent to a random grid cell x = random.randrange(self.grid.width) y = random.randrange(self.grid.height) self.grid.place_agent(a, (x, y)) self.datacollector = DataCollector( #model_reporters={"AvgReward": compute_avgreward}, #model_reporters={"AvgCollision": compute_avgcollision}, model_reporters={"0": compute_avg_reward_angle_0, "90": compute_avg_reward_angle_1, "180": compute_avg_reward_angle_2, "270": compute_avg_reward_angle_3}, agent_reporters={"Reward": lambda a: a.reward}) def step(self): self.datacollector.collect(self) self.schedule.step()
class StigmergyPrey(Model): def __init__(self, N, width, height): self.stigmergies = [] self.preys = [] self.grid = MultiGrid(width, height, True) for i in range(N): x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) agent = None if i % 2 == 0: agent = Stigmergy(i, self, 20 * (i + 1), i, 1) self.stigmergies.append(agent) else: agent = Prey(i, self) self.preys.append(agent) self.grid.place_agent(agent, (x, y)) def step(self, directions): observations = [] for stigmergy in self.stigmergies: stig_value = stigmergy.step() if stig_value == 0: self.stigmergies.remove(stigmergy) observations.append(stig_value) for prey in self.preys: prey.step() return observations
class DiseaseModel(Model): def __init__(self, home_store): self.num_agents = 1000 self.grid = MultiGrid(200, 200, True) self.schedule = RandomActivation(self) self.running = True for i in range(self.num_agents): a = Agent(i, self) self.schedule.add(a) while True: #x = round(int(np.random.normal(self.grid.width/2, 10, 1))) #y = round(int(np.random.normal(self.grid.height/2, 10, 1))) x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) if len( self.grid.get_neighbors( (x, y), moore=True, include_center=True, radius=10)) <= 7: self.grid.place_agent(a, (x, y)) home_store[i, :] = x, y break if i < 1: a.infected = 1 self.datacollector = DataCollector( model_reporters={"Tot informed": compute_informed}, agent_reporters={"Infected": "infected"}) def step(self): self.datacollector.collect(self) self.schedule.step()
class MoneyModel(Model): """A model with some number of agents.""" def __init__(self, N, width, height): self.num_agents = N self.grid = MultiGrid(width, height, True) self.schedule = RandomActivation(self) self.cities = [] self.running = True # Create agents for i in range(self.num_agents): a = MoneyAgent(i, self) self.schedule.add(a) # Add the agent to a random grid cell x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(a, (x, y)) self.datacollector = DataCollector( model_reporters={"Gini": compute_gini}, # `compute_gini` defined above agent_reporters={"Wealth": "wealth"}) def establish_cities(self): for contents, x, y in self.grid.coord_iter(): if len(contents) > 2: for agent in contents: agent.in_city = True def step(self): self.establish_cities() self.datacollector.collect(self) self.schedule.step()
class MoneyModel(Model): """Een model met N aantal agents, in een 30x30 grid. Elke agent begint met een wealth van 0 of 1 (random). Legenda: Zwart: Geen geld Grijs: 1-2 Groen: 3-5 Blauw: >5""" def __init__(self, N, width, height, neg): self.num_agents = N self.grid = MultiGrid(width, height, True) self.schedule = RandomActivation(self) self.running = True # Create agents for i in range(self.num_agents): a = MoneyAgent(i, self, neg) self.schedule.add(a) # Add the agent to a random grid cell x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(a, (x, y)) self.datacollector = DataCollector( model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}) def step(self): self.datacollector.collect(self) self.schedule.step()
class MoneyModel(Model): """a model with some number of agents""" def __init__(self, N, width, height): self.num_agents = N self.grid = MultiGrid(width, height, True) self.schedule = RandomActivation(self) self.running = True # create agents for i in range(self.num_agents): a = MoneyAgent(i, self) self.schedule.add(a) # add the agent to a random grid cell x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(a, (x, y)) self.datacollector = DataCollector( model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}) def step(self): """advance the model by one step""" self.datacollector.collect(self) self.schedule.step()
class HungerModel(Model): """A model with some number of agents.""" def __init__(self,N,width,height,num_of_food=10): self.num_agents = N self.num_food = num_of_food self.grid = MultiGrid(width,height,True) self.schedule= RandomActivation(self) self.running = True for i in range(self.num_agents): a = HungryAgent(i,self) self.schedule.add(a) x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(a,(x,y)) for i in range(self.num_food): kombinacija = sve_kombinacije[i] id_offset = i+1000 f = FoodAgent(id_offset,self, kombinacija[0],kombinacija[1],kombinacija[2]) self.schedule.add(f) x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(f,(x,y)) self.datacollector = DataCollector( model_reporters = {"TotalKnowledge":compute_knowledge}) #prosledice automacki # agent_reporters = {"Knowledge":"knowledge"}) def step(self): self.datacollector.collect(self) self.schedule.step()
class SIRModel(Model): def __init__(self, N, width, height, infection_period, infection_prob, initial_infected): self.num_agents = N self.grid = MultiGrid(width, height, True) self.schedule = RandomActivation(self) self.running = True self.infection_period = infection_period self.infection_prob = infection_prob for i in range(self.num_agents): agent = SIRAgent(i, self) if i < initial_infected: agent.infection() self.schedule.add(agent) x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(agent, (x, y)) def step(self): self.schedule.step()
class MoneyModel(Model): """ A model with N agents """ def __init__(self, N, width, height): self.running = True self.num_agents = N self.grid = MultiGrid(width, height, True) # create a toroidal grid self.schedule = RandomActivation(self) # create agents for i in range(self.num_agents): a = MoneyAgent(i, self) self.schedule.add(a) # add agent to random grid cell x = random.randrange(self.grid.width) y = random.randrange(self.grid.height) self.grid.place_agent(a, (x, y)) self.datacollector = DataCollector( model_reporters={"Gini": compute_gini}, # A function to call agent_reporters={"Wealth": "wealth"} # An agent attribute ) def step(self): """ Advance the model by 1 step """ self.datacollector.collect(self) self.schedule.step()
class bacModel(Model): '''world model for Eden Growth Model Simulation''' def __init__(self, beginRad, splitChance, x=-1, y=-1, mut_rate=MUTATION_RATE): self.running = True self.num_agents = 0 self.schedule = RandomActivation(self) self.grid = MultiGrid(WIDTH, HEIGHT, IS_TOROIDAL) #True for toroidal #self.datacollector = DataCollector( # model_reporters = {"Identifier": function_name}, #note no parentheses, just function name # agent_reporter = {"Identifier2": function_name2}) if x == -1: x = self.grid.width // 2 if y == -1: y = self.grid.height // 2 #create subsequent agents positions = self.grid.get_neighborhood((x,y), moore=False, radius=beginRad, include_center=True) for coord in positions: roll = random.random() a = bacAgent(self.num_agents, self, False, splitChance) self.num_agents += 1 self.schedule.add(a) self.grid.place_agent(a, coord) def step(self): #self.datacollector.collect(self) self.schedule.step()
class TransModel(Model): # constructor for grid of width x height with N agents def __init__(self, N, width, height): self.num_agents = N self.grid = MultiGrid(width, height, True) self.schedule = RandomActivation(self) self.running = True # create agents for i in range(self.num_agents): a = TransAgent(i, self) self.schedule.add(a) x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(a, (x, y)) # create data collector self.datacollector = DataCollector( model_reporters = {'Transit': transitPercent, 'PfH': pfhPercent}, agent_reporters = {'Time': 'time', 'Money': 'money'}) # advance the model by one tick def step(self): self.datacollector.collect(self) self.schedule.step()
def crear_nodo(self,nodo_id, tipo, ocupantes = [], tamano = None, ind_pos_def = None): assert tipo in ['casa','tienda', 'ciudad'] if tipo == 'casa': assert len(ocupantes)>0, 'No hay ocupantes a asignar en la casa' if not tamano: tamano = 2#len(ocupantes)//2+1 habitantes = [ind.unique_id for ind in ocupantes] elif tipo in ['tienda', 'ciudad']: if not tamano: tamano = 20 habitantes = [] espacio = MultiGrid(width = tamano, height = tamano, torus = False) if not ind_pos_def: disponibles = espacio.empties[::] shuffle(disponibles) for i in ocupantes: i.casa_id = nodo_id if tipo=='casa' else None i.n_familiares = len(habitantes) if tipo=='casa' else 0 i.nodo_actual = nodo_id i_pos = disponibles.pop() if not ind_pos_def else [0,0] espacio.place_agent(i, i_pos) self.add_node(nodo_id, tipo = tipo, habitantes = habitantes, espacio = espacio)
class BoltzmannWealthModel(Model): """A simple model of an economy where agents exchange currency at random. All the agents begin with one unit of currency, and each time step can give a unit of currency to another agent. Note how, over time, this produces a highly skewed distribution of wealth. """ def __init__(self, N=100, width=10, height=10): self.num_agents = N self.grid = MultiGrid(height, width, True) self.schedule = RandomActivation(self) self.datacollector = DataCollector( model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}) # Create agents for i in range(self.num_agents): a = MoneyAgent(i, self) self.schedule.add(a) # Add the agent to a random grid cell x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(a, (x, y)) self.running = True self.datacollector.collect(self) def step(self): self.schedule.step() # collect data self.datacollector.collect(self) def run_model(self, n): for i in range(n): self.step()
class BoltzmannWealthModel(Model): def __init__(self, T, N, lamda, width=10, height=10): self.num_agents = N self.T = T self.grid = MultiGrid(height, width, True) self.lamda = lamda self.count = 0 self.schedule = RandomActivation(self) self.datacollector = DataCollector(agent_reporters={'mi': 'm'}) # Create agents for i in range(self.num_agents): a = MoneyAgent(i, self) self.schedule.add(a) # Add the agent to a random grid cell x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(a, (x, y)) self.running = True self.datacollector.collect(self) def step(self): self.schedule.step() # collect data self.datacollector.collect(self) def run_model(self, n): for i in tqdm(range(1, n)): self.count += 1 #print("step:{}".format(i)) self.step()
class MoneyModel(Model): """A model with some number of agents.""" def __init__(self, N, width, height): self.num_agents = N self.running = True self.grid = MultiGrid(height, width, True) self.schedule = RandomActivation(self) self.datacollector = DataCollector(model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": lambda a: a.wealth}) # Create agents for i in range(self.num_agents): a = MoneyAgent(i) self.schedule.add(a) # Add the agent to a random grid cell x = random.randrange(self.grid.width) y = random.randrange(self.grid.height) self.grid.place_agent(a, (x, y)) def step(self): self.datacollector.collect(self) self.schedule.step() def run_model(self, n): for i in range(n): self.step()
class MoneyModel(Model): """A model with some number of agents.""" def __init__(self, N, width, height): super().__init__() self.num_agents = N self.grid = MultiGrid(width, height, True) self.schedule = RandomActivation(self) # Create agents for i in range(self.num_agents): a = MoneyAgent(i, self) self.schedule.add(a) # Add the agent to a random grid cell x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(a, (x, y)) self.datacollector = DataCollector( model_reporters={"Gini": compute_gini}, # `compute_gini` defined above agent_reporters={"Wealth": "wealth"}) def step(self): self.datacollector.collect(self) self.schedule.step()
class EpidemicModel(Model): def __init__(self, num_agent, width, height): super().__init__() self.num_agent = num_agent self.grid = MultiGrid(width=width, height=height, torus=True) self.schedule = RandomActivation(self) # Create agents for u_id in range(0, num_agent): a = EpidemicAgent(unique_id=u_id, model=self) self.schedule.add(a) # Place the agents in the grid x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(agent=a, pos=(x, y)) # Pick one agent and infect him/her agent = self.random.choice(self.schedule.agents) agent.state = 1 self.data_collector = DataCollector(model_reporters={ "Susceptibles": susc, "Infecteds": inf, "Recovereds": rec }) def step(self): self.data_collector.collect(self) self.schedule.step()
class WalkerWorld(Model): ''' Random walker world. ''' height = 10 width = 10 def __init__(self, height, width, agent_count): ''' Create a new WalkerWorld. Args: height, width: World size. agent_count: How many agents to create. ''' self.height = height self.width = width self.grid = MultiGrid(self.height, self.width, torus=True) self.agent_count = agent_count self.schedule = RandomActivation(self) # Create agents for i in range(self.agent_count): x = self.random.randrange(self.width) y = self.random.randrange(self.height) a = WalkerAgent((x, y), self, True) self.schedule.add(a) self.grid.place_agent(a, (x, y)) def step(self): self.schedule.step()
class WalkerWorld(Model): ''' Random walker world. ''' height = 10 width = 10 def __init__(self, height, width, agent_count): ''' Create a new WalkerWorld. Args: height, width: World size. agent_count: How many agents to create. ''' self.height = height self.width = width self.grid = MultiGrid(self.height, self.width, torus=True) self.agent_count = agent_count self.schedule = RandomActivation(self) # Create agents for i in range(self.agent_count): x = random.randrange(self.width) y = random.randrange(self.height) a = WalkerAgent((x, y), self, True) self.schedule.add(a) self.grid.place_agent(a, (x, y)) def step(self): self.schedule.step()
class MoneyModel(Model): """A model with some number of agents.""" def __init__(self, N, width, height): self.num_agents = N self.running = True self.grid = MultiGrid(height, width, True) self.schedule = RandomActivation(self) self.datacollector = DataCollector( model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": lambda a: a.wealth}) # Create agents for i in range(self.num_agents): a = MoneyAgent(i, self) self.schedule.add(a) # Add the agent to a random grid cell x = random.randrange(self.grid.width) y = random.randrange(self.grid.height) self.grid.place_agent(a, (x, y)) def step(self): self.datacollector.collect(self) self.schedule.step() def run_model(self, n): for i in range(n): self.step()
class TransModel(Model): def __init__(self, N, width, height, tax_val): self.num_agents = N self.grid = MultiGrid(width, height, True) self.schedule = RandomActivation(self) self.running = True self.steps = 0 self.tax_value = float(tax_val) # create agents for i in range(self.num_agents): agent = TransAgent(i, self) self.schedule.add(agent) x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(agent, (x, y)) # create data collector self.data_collector = DataCollector(model_reporters={ 'Transit': transit_percent, 'PfH': pfh_percent }, agent_reporters={ 'Time': 'time', 'Money': 'money' }) def step(self): """Adance the model by one tick.""" self.steps += 1 self.schedule.step() self.data_collector.collect(self)
class DiseaseModel(Model): def __init__(self, no_people, total_area, no_agents, all_x, all_y, infection_rate, first_infected, mobility, work_store, home_store): self.num_agents = no_agents grid_size = round( math.sqrt((self.num_agents / no_people) * total_area) * 100) self.grid = MultiGrid(grid_size, grid_size, False) self.schedule = RandomActivation(self) self.running = True for i in range(self.num_agents): a = Agent(i, self, infection_rate, work_store, home_store, mobility) self.schedule.add(a) self.grid.place_agent(a, (int(all_x[i]), int(all_y[i]))) if i == first_infected: a.infected = 1 self.datacollector = DataCollector( model_reporters={"Tot infections": compute_informed}, agent_reporters={ "Infected": "infected", "R-Number": "rnumber" }) def step(self): self.datacollector.collect(self) self.schedule.step()
class TestMultiGrid(unittest.TestCase): ''' Testing a toroidal MultiGrid ''' torus = True def setUp(self): ''' Create a test non-toroidal grid and populate it with Mock Agents ''' width = 3 height = 5 self.grid = MultiGrid(width, height, self.torus) self.agents = [] counter = 0 for x in range(width): for y in range(height): for i in range(TEST_MULTIGRID[x][y]): counter += 1 # Create and place the mock agent a = MockAgent(counter, None) self.agents.append(a) self.grid.place_agent(a, (x, y)) def test_agent_positions(self): ''' Ensure that the agents are all placed properly on the MultiGrid. ''' for agent in self.agents: x, y = agent.pos assert agent in self.grid[x][y] def test_neighbors(self): ''' Test the toroidal MultiGrid neighborhood methods. ''' neighborhood = self.grid.get_neighborhood((1, 1), moore=True) assert len(neighborhood) == 8 neighborhood = self.grid.get_neighborhood((1, 4), moore=True) assert len(neighborhood) == 8 neighborhood = self.grid.get_neighborhood((0, 0), moore=False) assert len(neighborhood) == 4 neighbors = self.grid.get_neighbors((1, 4), moore=False) assert len(neighbors) == 0 neighbors = self.grid.get_neighbors((1, 4), moore=True) assert len(neighbors) == 5 neighbors = self.grid.get_neighbors((1, 1), moore=False, include_center=True) assert len(neighbors) == 7 neighbors = self.grid.get_neighbors((1, 3), moore=False, radius=2) assert len(neighbors) == 11
class Money_Model(Model): def __init__(self, N, width=50, height=50, torus=True): self.num_agents = N self.schedule = RandomActivation(self) self.grid = MultiGrid(height, width, torus) self.create_agents() self.dc = DataCollector({"Gini": lambda m: m.compute_gini()}, {"Wealth": lambda a: a.wealth}) self.running = True def create_agents(self): for i in range(self.num_agents): a = Money_Agent(i) self.schedule.add(a) x = random.randrange(self.grid.width) y = random.randrange(self.grid.height) self.grid.place_agent(a, (x, y)) def step(self): self.dc.collect(self) self.schedule.step() def run_model(self, steps): for i in range(steps): self.step() def compute_gini(self): agent_wealths = [agent.wealth for agent in self.schedule.agents] x = sorted(agent_wealths) N = self.num_agents B = sum( xi * (N-i) for i,xi in enumerate(x) ) / (N*sum(x)) return (1 + (1/N) - 2*B)
class MoneyModel(Model): """A model with some number of agents.""" def __init__(self, N, elevation): # num_agents is a parameter and stays constant throughout the simulation self.num_agents = N self.width = elevation.shape[0] self.height = elevation.shape[1] self.z = elevation # Adds the grid to the model object self.grid = MultiGrid(self.width, self.height, True) # Adds the scheduler to the model object self.schedule = RandomActivation(self) # create agents (for loop hence multiple agents) and add them to the schedular (one at a time) for i in range(self.num_agents): # The money agent class (object) is being computed for every value of i a = MoneyAgent(i, self) self.schedule.add(a) # Add the agents to a random cell # x = self.random.randrange(self.width) # y = self.random.randrange(self.height) self.grid.place_agent(a, (50, 14)) def step(self): '''Advance the model by one step.''' self.schedule.step()
class ForageModel(Model): """A model with some number of agents.""" def __init__(self, n_agents, width, height): self.running = True # this was important for visualization self.num_agents = n_agents self.grid = MultiGrid( width, height, torus=True) # True means toroidal space (for now) self.schedule = RandomActivation(self) # Create agents for i in range(self.num_agents): a = OysterCatcher(i, self) self.schedule.add(a) # Add the agent to a random grid cell coords = (random.randrange(self.grid.width), random.randrange(self.grid.height)) self.grid.place_agent(a, coords) self.dc = DataCollector(model_reporters={ "agent_count": lambda m: m.schedule.get_agent_count(), "gini": compute_gini }, agent_reporters={ "name": lambda a: a.unique_id, "reserve": lambda a: a.reserve }) def step(self): '''Advance the model by one step.''' self.dc.collect(self) self.schedule.step()
class bacServerModel(Model): ################ ###Deprecated### ################ def __init__(self, width, height, beginRad): self.running = True self.num_agents = width * height self.schedule = RandomActivation(self) self.grid = MultiGrid(width, height, IS_TOROIDAL) #True for toroidal #self.datacollector = DataCollector( # model_reporters = {"Identifier": function_name}, #note no parentheses, just function name # agent_reporter = {"Identifier2": function_name2}) for x in range(self.grid.width): for y in range(self.grid.height): a = bacServerAgent(self.num_agents, self) self.num_agents += 1 self.schedule.add(a) self.grid.place_agent(a, (x,y)) x = self.grid.width // 2 y = self.grid.height // 2 #create subsequent agents positions = self.grid.get_neighborhood((x,y), moore=False, radius=beginRad, include_center=True) for coord in positions: ag = self.grid.get_cell_list_contents([coord])[0] ag.activate() def step(self): #self.datacollector.collect(self) self.schedule.step()
class HungerModel(Model): """A model with some number of agents.""" def __init__(self,N,width,height,num_of_food=64): self.num_agents = N self.num_food = num_of_food self.grid = MultiGrid(width,height,True) self.schedule= RandomActivation(self) self.running = True for i in range(self.num_agents): a = HungryAgent(i,self) self.schedule.add(a) x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(a,(x,y)) for i in range(self.num_food): kombinacija = sve_kombinacije[i] id_offset = i+1000 f = FoodAgent(id_offset,self, kombinacija[0],kombinacija[1],kombinacija[2]) self.schedule.add(f) x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(f,(x,y)) self.datacollector = DataCollector( model_reporters = {"TotalKnowledge":compute_knowledge,"TotalEnergy":total_energy,"TotalExperience":measure_experience,"TotalFood":total_pojedena_hrana,"TotalPoison":total_pojedeni_otrovi}) # agent_reporters = {"Knowledge":"knowledge"}) def step(self): self.datacollector.collect(self) self.schedule.step()
class HumanCapital(Model): ##Inicialización del modelo. def __init__(self, N_buenos_empleo, seed=None): self.current_id = 0 self.running = True self.width = 7 self.height = 7 # Definimos el schedule para hacer la ejecucion en orden aleatorio self.schedule = RandomActivation(self) #Definimos el grid de tamanio 7x7 y sin fronteras flexibles self.grid = MultiGrid(self.width, self.height, False) ##Declaración del grid. for y in range(0, self.height): for x in range(0, self.width): a = Agente(self.next_id(), self) self.schedule.add(a) self.grid.place_agent(a, [x, y]) self.datacollector = DataCollector(model_reporters={ "Nagentes": contarAgentes, "NumberTicks": getCurrentTick }) ##Itinerario. def step(self): #Ejecutar el step de los agentes. self.schedule.step() #Ejecutar el datacollector self.datacollector.collect(self)
class BikeShare(Model): """A model with some number of potential riders.""" global hours_per_day hours_per_day = 24 def __init__(self, N, M, width, height): # self.running = True self.num_agents = N # self.grid = MultiGrid(width, height, True) self.num_stations = M self.radius = np.int(np.sqrt(width * height)) self.grid = MultiGrid(width, height, True) self.grid_stations = SingleGrid(width, height, True) self.schedule = RandomActivation(self) self.timestamp = 0 # use to find days self.datestamp = 0 threshold = 0.8 # create agents for i in range(self.num_agents): a = BikeRider(i, self, threshold) self.schedule.add(a) # add the agent to a random grid cell x = np.random.randint(self.grid.width) y = np.random.randint(self.grid.height) self.grid.place_agent(a, (x, y)) for i in range(self.num_stations): s = BikeStation(i, self) self.schedule.add(s) # add the station to a random grid cell # x = np.random.randint(self.grid_stations.width) # y = np.random.randint(self.grid_stations.height) self.grid_stations.position_agent(s) # ensures one station max # self.grid.place_agent(s, s.pos) print ("Station " + str(s.unique_id) + "; " + str(s.pos)) # self.datacollector = DataCollector( # model_reporters={"Gini": compute_gini}, # agent_reporters={"Wealth": lambda a: a.wealth} # ) def step(self): '''Advance the model by 1 step: arbitrary unit of time. ''' # self.datacollector.collect(self) # print ("Step the schedule ...") # print (str(self.timestamp)) self.timestamp += 1 if self.timestamp % hours_per_day == 0: print ("\n**** new day " + str(self.datestamp)) self.datestamp += 1 self.timestamp = 0 self.schedule.step()
class MoniModel(Model): """ A model for monitoring agents """ def __init__(self, N, width, height): #Monitoring space self.width = width self.height = height self.grid = MultiGrid(height, width, False) #non toroidal grid self.schedule = SimultaneousActivation(self) self.abCount = 0 #initial abnormality count self.detectedAb = 0 self.interactionCount = 0 # ============================================================================= # self.coveredArea = [] # self.interactionRateAverage = 0 # self.coveragePercentage = 0 # self.coveragePercentageAverage = 0 # ============================================================================= # Create agents self.num_agents = N for i in range(self.num_agents): x = floor(self.width / N * i + self.width / N / 2) # create and add agent with id number i to the scheduler a = MoniAgent(i, self) self.schedule.add(a) #place agent at the center of its limit coor self.grid.place_agent(a, (x, 0)) # this part is for visualization only # self.running = True def step(self): # self.interactionCount = 0 self.schedule.step() def run_model(self, n): for i in range(n): # self.initPos() self.step() # print(self.schedule.steps) """ Calculate fitness of a swarm (success ratio) """ def fitness(self): for _ in range(100): self.step() if self.abCount == 0: self.abCount = 1 #avoid division by 0 error # return self.detectedAb/self.abCount return (sum(self.schedule.agents[0].genome))
class Charts(Model): # grid height grid_h = 20 # grid width grid_w = 20 """init parameters "init_people", "rich_threshold", and "reserve_percent" are all UserSettableParameters""" def __init__(self, height=grid_h, width=grid_w, init_people=2, rich_threshold=10, reserve_percent=50,): self.height = height self.width = width self.init_people = init_people self.schedule = RandomActivation(self) self.grid = MultiGrid(self.width, self.height, torus=True) # rich_threshold is the amount of savings a person needs to be considered "rich" self.rich_threshold = rich_threshold self.reserve_percent = reserve_percent # see datacollector functions above self.datacollector = DataCollector(model_reporters={ "Rich": get_num_rich_agents, "Poor": get_num_poor_agents, "Middle Class": get_num_mid_agents, "Savings": get_total_savings, "Wallets": get_total_wallets, "Money": get_total_money, "Loans": get_total_loans}, agent_reporters={ "Wealth": lambda x: x.wealth}) # create a single bank for the model self.bank = Bank(1, self, self.reserve_percent) # create people for the model according to number of people set by user for i in range(self.init_people): # set x, y coords randomly within the grid x = self.random.randrange(self.width) y = self.random.randrange(self.height) p = Person(i, (x, y), self, True, self.bank, self.rich_threshold) # place the Person object on the grid at coordinates (x, y) self.grid.place_agent(p, (x, y)) # add the Person object to the model schedule self.schedule.add(p) self.running = True self.datacollector.collect(self) def step(self): # tell all the agents in the model to run their step function self.schedule.step() # collect data self.datacollector.collect(self) def run_model(self): for i in range(self.run_time): self.step()
class Sugarscape2ConstantGrowback(Model): ''' Sugarscape 2 Constant Growback ''' verbose = True # Print-monitoring def __init__(self, height=50, width=50, initial_population=100): ''' Create a new Constant Growback model with the given parameters. Args: initial_population: Number of population to start with ''' # Set parameters self.height = height self.width = width self.initial_population = initial_population self.schedule = RandomActivationByBreed(self) self.grid = MultiGrid(self.height, self.width, torus=False) self.datacollector = DataCollector({"SsAgent": lambda m: m.schedule.get_breed_count(SsAgent), }) # Create sugar import numpy as np sugar_distribution = np.genfromtxt("sugarscape/sugar-map.txt") for _, x, y in self.grid.coord_iter(): max_sugar = sugar_distribution[x, y] sugar = Sugar((x, y), self, max_sugar) self.grid.place_agent(sugar, (x, y)) self.schedule.add(sugar) # Create agent: for i in range(self.initial_population): x = random.randrange(self.width) y = random.randrange(self.height) sugar = random.randrange(6, 25) metabolism = random.randrange(2, 4) vision = random.randrange(1, 6) ssa = SsAgent((x, y), self, False, sugar, metabolism, vision) self.grid.place_agent(ssa, (x, y)) self.schedule.add(ssa) self.running = True def step(self): self.schedule.step() self.datacollector.collect(self) if self.verbose: print([self.schedule.time, self.schedule.get_breed_count(SsAgent)]) def run_model(self, step_count=200): if self.verbose: print('Initial number Sugarscape Agent: ', self.schedule.get_breed_count(SsAgent)) for i in range(step_count): self.step() if self.verbose: print('') print('Final number Sugarscape Agent: ', self.schedule.get_breed_count(SsAgent))
class WolfSheepPredation(Model): ''' Wolf-Sheep Predation Model ''' initial_sheep = 100 initial_wolves = 50 sheep_gain_from_food = 4 grass = False wolf_gain_from_food = 20 sheep_reproduce = 0.04 wolf_reproduce = 0.05 height = 20 width = 20 def __init__(self, height=20, width=20, initial_sheep=100, initial_wolves=50, sheep_reproduce=0.04, wolf_reproduce=0.05, wolf_gain_from_food=20, grass=False, sheep_gain_from_food=4): ''' Create a new Wolf-Sheep model with the given parameters. Args: initial_sheep: Number of sheep to start with initial_wolves: Number of wolves to start with sheep_reproduce: Probability of each sheep reproducing each step wolf_reproduce: Probability of each wolf reproducing each step wolf_gain_from_food: Energy a wolf gains from eating a sheep grass: Whether to have the sheep eat grass for energy sheep_gain_from_food: Energy sheep gain from grass, if enabled. ''' # Set parameters self.height = height self.width = width self.initial_sheep = initial_sheep self.initial_wolves = initial_wolves self.sheep_reproduce = sheep_reproduce self.wolf_reproduce = wolf_reproduce self.wolf_gain_from_food = wolf_gain_from_food self.grass = grass self.sheep_gain_from_food = sheep_gain_from_food self.schedule = RandomActivation(self) self.grid = MultiGrid(self.height, self.width, torus=True) # Create sheep: for i in range(self.initial_sheep): x = random.randrange(self.width) y = random.randrange(self.height) sheep = Sheep(self.grid, x, y, True) self.grid.place_agent(sheep, (x, y)) self.schedule.add(sheep) # Create wolves for i in range(self.initial_wolves): x = random.randrange(self.width) y = random.randrange(self.height) energy = random.randrange(2 * self.wolf_gain_from_food) wolf = Wolf(self.grid, x, y, True, energy) self.grid.place_agent(wolf, (x, y)) self.schedule.add(wolf) self.running = True def step(self): self.schedule.step()
class BankReserves(Model): """ This model is a Mesa implementation of the Bank Reserves model from NetLogo. It is a highly abstracted, simplified model of an economy, with only one type of agent and a single bank representing all banks in an economy. People (represented by circles) move randomly within the grid. If two or more people are on the same grid location, there is a 50% chance that they will trade with each other. If they trade, there is an equal chance of giving the other agent $5 or $2. A positive trade balance will be deposited in the bank as savings. If trading results in a negative balance, the agent will try to withdraw from its savings to cover the balance. If it does not have enough savings to cover the negative balance, it will take out a loan from the bank to cover the difference. The bank is required to keep a certain percentage of deposits as reserves and the bank's ability to loan at any given time is a function of the amount of deposits, its reserves, and its current total outstanding loan amount. """ # grid height grid_h = 20 # grid width grid_w = 20 """init parameters "init_people", "rich_threshold", and "reserve_percent" are all UserSettableParameters""" def __init__(self, height=grid_h, width=grid_w, init_people=2, rich_threshold=10, reserve_percent=50,): self.height = height self.width = width self.init_people = init_people self.schedule = RandomActivation(self) self.grid = MultiGrid(self.width, self.height, torus=True) # rich_threshold is the amount of savings a person needs to be considered "rich" self.rich_threshold = rich_threshold self.reserve_percent = reserve_percent # see datacollector functions above self.datacollector = DataCollector(model_reporters={ "Rich": get_num_rich_agents, "Poor": get_num_poor_agents, "Middle Class": get_num_mid_agents, "Savings": get_total_savings, "Wallets": get_total_wallets, "Money": get_total_money, "Loans": get_total_loans}, agent_reporters={ "Wealth": lambda x: x.wealth}) # create a single bank for the model self.bank = Bank(1, self, self.reserve_percent) # create people for the model according to number of people set by user for i in range(self.init_people): # set x, y coords randomly within the grid x = self.random.randrange(self.width) y = self.random.randrange(self.height) p = Person(i, (x, y), self, True, self.bank, self.rich_threshold) # place the Person object on the grid at coordinates (x, y) self.grid.place_agent(p, (x, y)) # add the Person object to the model schedule self.schedule.add(p) self.running = True self.datacollector.collect(self) def step(self): # tell all the agents in the model to run their step function self.schedule.step() # collect data self.datacollector.collect(self) def run_model(self): for i in range(self.run_time): self.step()
class WolfSheep(Model): ''' Wolf-Sheep Predation Model ''' height = 20 width = 20 initial_sheep = 100 initial_wolves = 50 sheep_reproduce = 0.04 wolf_reproduce = 0.05 wolf_gain_from_food = 20 grass = False grass_regrowth_time = 30 sheep_gain_from_food = 4 verbose = False # Print-monitoring description = 'A model for simulating wolf and sheep (predator-prey) ecosystem modelling.' def __init__(self, height=20, width=20, initial_sheep=100, initial_wolves=50, sheep_reproduce=0.04, wolf_reproduce=0.05, wolf_gain_from_food=20, grass=False, grass_regrowth_time=30, sheep_gain_from_food=4): ''' Create a new Wolf-Sheep model with the given parameters. Args: initial_sheep: Number of sheep to start with initial_wolves: Number of wolves to start with sheep_reproduce: Probability of each sheep reproducing each step wolf_reproduce: Probability of each wolf reproducing each step wolf_gain_from_food: Energy a wolf gains from eating a sheep grass: Whether to have the sheep eat grass for energy grass_regrowth_time: How long it takes for a grass patch to regrow once it is eaten sheep_gain_from_food: Energy sheep gain from grass, if enabled. ''' super().__init__() # Set parameters self.height = height self.width = width self.initial_sheep = initial_sheep self.initial_wolves = initial_wolves self.sheep_reproduce = sheep_reproduce self.wolf_reproduce = wolf_reproduce self.wolf_gain_from_food = wolf_gain_from_food self.grass = grass self.grass_regrowth_time = grass_regrowth_time self.sheep_gain_from_food = sheep_gain_from_food self.schedule = RandomActivationByBreed(self) self.grid = MultiGrid(self.height, self.width, torus=True) self.datacollector = DataCollector( {"Wolves": lambda m: m.schedule.get_breed_count(Wolf), "Sheep": lambda m: m.schedule.get_breed_count(Sheep)}) # Create sheep: for i in range(self.initial_sheep): x = self.random.randrange(self.width) y = self.random.randrange(self.height) energy = self.random.randrange(2 * self.sheep_gain_from_food) sheep = Sheep(self.next_id(), (x, y), self, True, energy) self.grid.place_agent(sheep, (x, y)) self.schedule.add(sheep) # Create wolves for i in range(self.initial_wolves): x = self.random.randrange(self.width) y = self.random.randrange(self.height) energy = self.random.randrange(2 * self.wolf_gain_from_food) wolf = Wolf(self.next_id(), (x, y), self, True, energy) self.grid.place_agent(wolf, (x, y)) self.schedule.add(wolf) # Create grass patches if self.grass: for agent, x, y in self.grid.coord_iter(): fully_grown = self.random.choice([True, False]) if fully_grown: countdown = self.grass_regrowth_time else: countdown = self.random.randrange(self.grass_regrowth_time) patch = GrassPatch(self.next_id(), (x, y), self, fully_grown, countdown) self.grid.place_agent(patch, (x, y)) self.schedule.add(patch) self.running = True self.datacollector.collect(self) def step(self): self.schedule.step() # collect data self.datacollector.collect(self) if self.verbose: print([self.schedule.time, self.schedule.get_breed_count(Wolf), self.schedule.get_breed_count(Sheep)]) def run_model(self, step_count=200): if self.verbose: print('Initial number wolves: ', self.schedule.get_breed_count(Wolf)) print('Initial number sheep: ', self.schedule.get_breed_count(Sheep)) for i in range(step_count): self.step() if self.verbose: print('') print('Final number wolves: ', self.schedule.get_breed_count(Wolf)) print('Final number sheep: ', self.schedule.get_breed_count(Sheep))
class Trade(Model): verbose = False # Print-monitoring os.chdir(os.path.dirname(__file__)) fpath = os.getcwd() + '/parameters.csv' reader = csv.reader(open(fpath, 'r')) d = dict() for key, value in reader: d[key] = float(value) height = int(d['height']) width = int(d['width']) ini_buyers = int(d['ini_buyers']) ini_sellers = int(d['ini_sellers']) def __init__(self, height=height, width=width, ini_buyers=ini_buyers, ini_sellers=ini_sellers): '''Parameters''' reader = csv.reader(open(self.fpath, 'r')) d = dict() for key, value in reader: d[key] = float(value) self.height = int(d['height']) self.width = int(d['width']) self.ini_buyers = int(d['ini_buyers']) self.ini_sellers = int(d['ini_sellers']) self.ini_cash = d['ini_cash'] self.num_w = int(d['num_w']) self.trust_w = d['trust_w'] self.costs = d['costs'] * ini_buyers self.mktresearch = d['mktresearch'] self.priceRange = d['priceRange'] self.csa = d['csa'] self.csa_length = int(d['csa_length']) self.network = d['network'] self.lb = d['lb'] # Lower bound self.ub = d['ub'] # Upper bound (in effect, unbounded) self.up = d['up'] # Up rate self.down = d['down'] # Down rate ''' Entry mode 0: No entry 1: Full market research 2: Whenever Avg cash balance > entryThreshhold with a random position 3: Whenever Max cash balance > entryThreshhold enter nearby that position ''' self.entry = int(d['entry']) self.entryFrequency = int(d['entryFrequency']) self.entryThreshhold = d['entryThreshhold'] * self.ini_cash self.entryRadius = int(d['entryRadius']) # Area within high earner that a new seller will plop down '''Debugging''' self.sellerDebug = d['sellerDebug'] self.buyerDebug = d['buyerDebug'] self.networkDebug = d['networkDebug'] self.utilweightDebug = d['utilweightDebug'] self.entryDebug = d['entryDebug'] self.schedule = RandomActivationByType(self) self.grid = MultiGrid(self.height, self.width, torus=True) self.datacollector = DataCollector( {"Sellers": lambda m: m.schedule.get_type_count(Seller), "Buyers": lambda m: m.schedule.get_type_count(Buyer)}) '''Initialization''' self.cnt = 0 # Period counter self.buyers = {} # Dictionary of buyer instances self.sellers = {} # Dictionary of seller instances self.sid_alive = [] self.pi = [0] * (height * width) # Profitability prices = {} for i in range(ini_sellers): prices[i] = self.priceRange * np.random.rand() + 1 min_price = min(prices.values()) for i in range(self.num_w): prices[i] = min_price * 0.9 self.prices = prices e = {} # Embeddedness for i in range(ini_sellers): e[i] = 0.8*np.random.rand() + 0.2 # 0.2 - 1.0 for i in range(self.num_w): e[i] = 0 self.e = e '''Create buyers''' for i in range(self.ini_buyers): # It seems coincidence in the same cell is allowed x = np.random.randint(self.width) y = np.random.randint(self.height) α = d['alpha'] trust = {} β = d['beta']*np.random.rand() for j in range(ini_sellers): trust[j] = np.random.rand() for j in range(self.num_w): trust[j] = self.trust_w γ = d['gamma'] ''' Network ties ties[j]=0 means 'no connection with bid=j buyer' ties[own bid] = 0 or 1 means nothing. ''' ties = dict(zip(range(ini_buyers),[0]*ini_buyers)) buyer = Buyer(i, self.grid, (x, y), True, α, trust, β, γ, ties) self.buyers[i] = buyer # Dictionary key is an integer self.grid.place_agent(buyer, (x, y)) self.schedule.add(buyer) '''Create sellers''' for i in range(self.ini_sellers): x = np.random.randint(self.width) y = np.random.randint(self.height) cash = self.ini_cash costs = self.costs price = self.prices[i] w = False if i < self.num_w: w = True e = self.e[i] seller = Seller(i, self.grid, (x, y), True, cash, costs, price, w, e) self.sellers[i] = seller self.grid.place_agent(seller, (x, y)) self.schedule.add(seller) self.running = True def step(self): '''Initialization''' self.cnt += 1 self.sid_alive = [] # Excluding Wal-Mart for sid, seller in self.sellers.items(): if seller.csa == False: '''Adjacent sales''' seller.sales = 0 '''Customer list''' seller.customers[self.cnt] = [] else: seller.customers[self.cnt] = seller.customers[self.cnt - 1] '''A list of living sellers (excluding Wal-Mart)''' if (seller.alive and seller.w == False): self.sid_alive.append(sid) # For entry if self.entry == 1: # Initialize the profitability vector self.pi = [0] * (self.height * self.width) elif self.entry == 2: # Calculate the average cash balance (scalar) total_cash = 0 cnt_seller = 0 total_cash = sum([self.sellers[sid].cash for sid in self.sid_alive]) self.avg_cash = total_cash / len(self.sid_alive) elif self.entry == 3: # Calculate the max cash balance (scalar) temp_sids = self.sid_alive cash_bals = [self.sellers[sid].cash for sid in temp_sids] new_sellers = True # Loops over maximal sellers until it finds one with no new firms nearby while(new_sellers): max_cash = max(cash_bals) if(max_cash < self.entryThreshhold): break max_cash_ind = cash_bals.index(max_cash) max_sid = temp_sids[max_cash_ind] max_x = self.sellers[max_sid].pos[0] max_y = self.sellers[max_sid].pos[1] if(self.entryDebug): print("Max Cash, sid:", max_sid, ", Cell:(" + str(max_x) + ", " + str(max_y) + ")") print("-Neighbor Ages:", end=" ") new_sellers = False # Check the age of all firms nearby the max cash balance firm # (wants to avoid new firms) for neighbor in self.grid.get_neighbors((max_x, max_y),True,True,self.entryRadius): if(isinstance(neighbor, Seller) and self.entryDebug): print(str(neighbor.age), end=" ") if(isinstance(neighbor, Seller) and neighbor.age < 52): new_sellers = True if(new_sellers): if(self.entryDebug): print("\n-New Firm Exists Near sid: ", max_sid, ", Cell:(" + str(max_x) + ", " + str(max_y) + ")") del temp_sids[max_cash_ind] del cash_bals[max_cash_ind] ''' Entry Entry=1 Determine the most profitable position and whether to enter Threshold: the fixed costs Entry=2 Enter whenever Avg cash balance > entryThreshhold Entry=3 Checks that no new firms are near the max balance seller Enters within entryRadius units of the seller with max cash balance ''' entry_on = False if (self.entry == 1 and self.mktresearch): opt = max(self.pi) opt_pos = self.pi.index(opt) if opt >= self.costs: x = opt_pos // self.width y = opt_pos % self.width entry_on = True elif (self.entry == 2 and self.avg_cash > self.entryThreshhold): x = np.random.randint(self.width) y = np.random.randint(self.height) entry_on = True elif (self.entry == 3 and max_cash > self.entryThreshhold and not new_sellers): x = max_x + np.random.randint(-self.entryRadius,self.entryRadius) y = max_y + np.random.randint(-self.entryRadius,self.entryRadius) x = x % self.width y = y % self.height entry_on = True if entry_on: cash = self.ini_cash costs = self.costs w = False price = np.mean([self.sellers[sid].price for sid in self.sid_alive]) # e = np.random.choice([self.sellers[sid].e for sid in self.sid_alive]) e = np.random.rand() sid = max([seller.sid for seller in self.sellers.values()]) + 1 self.sid_alive.append(sid) seller = Seller(sid, self.grid, (x, y), True, cash, costs, price, w, e) self.sellers[sid] = seller self.sellers[sid].customers[self.cnt] = [] for buyer in self.buyers.values(): buyer.trust[sid] = self.lb self.grid.place_agent(seller, (x, y)) self.schedule.add(seller) self.prices[sid] = price if (self.entry >= 1 and self.entryDebug): entry_NewFirm(sid, x, y) self.mktresearch = False '''Move''' self.schedule.step() self.datacollector.collect(self) if self.verbose: print([self.schedule.time, self.schedule.get_type_count(Seller), self.schedule.get_type_count(Buyer)]) '''Network''' if self.network: network.formation(self.cnt, self.buyers, self.sellers) def run_model(self, step_count): for _ in range(step_count): self.step() ''' Debugging ''' '''Display trust levels''' if self.buyerDebug: debug.buyers(self.buyers) '''Network''' if self.networkDebug: debug.network(self.buyers) '''Display seller information''' if self.sellerDebug: debug.sellers(self.cnt, self.num_w, self.sellers, self.buyers) '''End of the run''' print("\n************\nPut a summary here.\n************")
class DDAModel(Model): """A simple DDA model""" _width = _WIDTH # width and height of the world. These shouldn't be changed _height = _HEIGHT def __init__(self, N, iterations, bleedout_rate=np.random.normal(0.5, scale=0.1), mp=False): """ Create a new instance of the DDA model. Parameters: N - the number of agents iterations - the number of iterations to run the model for blr - the bleedout rate (the probability that agents leave at the midpoint) (default normal distribution with mean=0.5 and sd=0.1) mp - whether to use multiprocess (agents call step() method at same time) (doesn't work!) (default False) """ self.num_agents = N self._bleedout_rate = bleedout_rate self.iterations = iterations self.mp = mp # Locations of important parts of the environment. These shouldn't be changed self.graveyard = (0, 0) # x,y locations of the graveyard self.loc_a = (1, 0) # Location a (on left side of street) self.loc_b = (23, 0) # Location b (on the right side) self.loc_mid = (12, 0) # The midpoint # 'Cameras' that store the number of agents who pass them over the course of an hour. The historical counts # are saved by mesa using the DataCollector self._camera_a = 0 # Camera A self._camera_b = 0 # Camera B self._camera_m = 0 # The midpoint # Set up the scheduler. Note that this isn't actually used (see below re. agent's stepping) self.schedule = RandomActivation(self) # Random order for calling agent's step methods # For multiprocess step method self.pool = Pool() # Create the environment self.grid = MultiGrid(DDAModel._width, DDAModel._height, False) # Define a variable that can be used to indicate whether the model has finished self.running = True # Create a distribution that tells us the number of agents to be added to the world at each self._agent_dist = DDAModel._make_agent_distribution(N) # Create all the agents for i in range(self.num_agents): a = DDAAgent(i, self) self.schedule.add(a) # Add the agents to the schedule # All agents start as 'retired' in the graveyard a.state = AgentStates.RETIRED self.grid.place_agent(a, self.graveyard) # All agents start in the graveyard print("Created {} agents".format(len(self.schedule.agents))) # Define a collector for model data self.datacollector = DataCollector( model_reporters={"Bleedout rate": lambda m: m.bleedout_rate, "Number of active agents": lambda m: len(m.active_agents()), "Camera A counts": lambda m: m.camera_a, "Camera B counts": lambda m: m.camera_b, "Camera M counts": lambda m: m.camera_m }, agent_reporters={"Location (x)": lambda agent: agent.pos[0], "State": lambda agent: agent.state } ) def step(self): """Advance the model by one step.""" print("Iteration {}".format(self.schedule.steps)) self.datacollector.collect(self) # Collect data about the model # See if the model has finished running. if self.schedule.steps >= self.iterations: self.running = False return # Things to do every hour. # - 1 - reset the camera counters # - 2 - activate some agents num_to_activate = -1 s = self.schedule.steps # Number of steps (for convenience) if s % 60 == 0: # On the hour # Reset the cameras self._reset_cameras() # Calculate the number of agents to activate num_to_activate = int(self._agent_dist[int((s / 60) % 24)]) print("\tActivating {} agents on hour {}".format(num_to_activate, s % 60)) else: num_to_activate = 0 assert num_to_activate >= 0, \ "The number of agents to activate should be greater or equal to 0, not {}".format(num_to_activate) if num_to_activate > 0: # Choose some agents that are currently retired to activate. retired_agents = [a for a in self.schedule.agents if a.state == AgentStates.RETIRED] assert len(retired_agents) >= num_to_activate, \ "Too few agents to activate (have {}, need {})".format(len(retired_agents), num_to_activate) to_activate = np.random.choice(retired_agents, size=num_to_activate, replace=False) print("\t\tActivating agents: {}".format(to_activate)) for a in to_activate: a.activate() # XXXX HERE - see line 477 om wprlomgca,eras/py # Call all agents' 'step' method. if not self.mp: # Not using multiprocess. Do it the mesa way: self.schedule.step() else: # Better to do it a different way to take advantage of multicore processors and to ignore agents who are not # active (no need for them to step at all) # NOTE: Doesn't work! The problem is that the DDAAgent needs the DDAModel class, which means # that this class needs to be pickled and copied to the child processes. The first problem (which can be # fixed by creating functions rather than using lambda, although this is messy) is that DDAModel uses # lambda functions, that can't be pickled. Second and more difficult problem is that the Pool object itself # cannot be shared. Possible solution here: # https://stackoverflow.com/questions/25382455/python-notimplementederror-pool-objects-cannot-be-passed-between-processes # but for the meantime I'm not going to try to fix this. active_agents = self.active_agents() # Get all of the active agents random.shuffle(active_agents) if active_agents is None: print("\tNo agents are active") # Nothing to do else: p = Pool() p.map(DDAAgent._step_agent, active_agents) # Calls step() for all agents # As not using the proper schedule method, need to update time manually. self.schedule.steps += 1 self.schedule.time += 1 def increment_camera_a(self): """Used by agents to tell the model that they have just passed the camera at location A. It would be neater to have the cameras detect the agents, but I think that this would be quite expensive.""" self._camera_a += 1 # Increment the count of the current hour (most recent) def increment_camera_b(self): """Used by agents to tell the model that they have just passed the camera at location B. It would be neater to have the cameras detect the agents, but I think that this would be quite expensive.""" self._camera_b += 1 # Increment the count of the current hour (most recent) def increment_camera_m(self): """Used by agents to tell the model that they have just passed the camera at the midpoint. This is only for information really, in this scenario there is no camera at the midpoint""" self._camera_m += 1 # Increment the count of the current hour (most recent) @property def camera_a(self) -> int: """Getter for the count of the camera at location A""" return self._camera_a @property def camera_b(self) -> int: """Getter for the count of the camera at location B""" return self._camera_b @property def camera_m(self) -> int: """Getter for the count of the camera at the midpoint""" return self._camera_m def _reset_cameras(self): """Reset the cameras to zero. Done on the hour""" self._camera_a = 0 self._camera_b = 0 self._camera_m = 0 @staticmethod def _step_agent(a): """Call the given agent's step method. Only required because Pool.map doesn't take lambda functions.""" a.step() # bleedout rate is defined as a property: http://www.python-course.eu/python3_properties.php @property def bleedout_rate(self): """Get the current bleedout rate""" return self._bleedout_rate @bleedout_rate.setter def bleedout_rate(self, blr: float) -> None: """Set the bleedout rate. It must be between 0 and 1 (inclusive). Failure to do that raises a ValueError.""" if blr < 0 or blr > 1: raise ValueError("The bleedout rate must be between 0 and 1, not '{}'".format(blr)) self._bleedout_rate = blr def active_agents(self) -> List[DDAAgent]: """Return a list of the active agents (i.e. those who are not retired)""" return [a for a in self.schedule.agents if a.state != AgentStates.RETIRED] @classmethod def _make_agent_distribution(cls, N): """Create a distribution that tells us the number of agents to be created at each hour""" a = np.arange(0, 24, 1) # Create an array with one item for each hour rv1 = norm(loc=12., scale=6.0) # A continuous, normal random variable with a peak at 12 dist = rv1.pdf(a) # Draw from the random variable pdf, taking values from a return [round(item * N, ndigits=0) for item in dist] # Return a rounded list (the number of agents at each hour)
class SugarscapeModel(Model): def __init__(self, height=50, width=50, init_agents=500, max_metabolism=3, max_vision=10, max_init_sugar=5, min_age=30, max_age=60, init_poll=3, ex_ratio=2, ex_mod=1, poll_growth_rule=True, inheritance_rule=True): self.height = height self.width = width self.init_agents = init_agents self.init_poll = init_poll self.max_metabolism = max_metabolism self.max_vision = max_vision self.max_init_sugar = max_init_sugar self.min_age = min_age self.max_age = max_age self.ex_ratio = ex_ratio self.ex_mod = ex_mod self.replacement_rule = True self.pollution_rule = False self.diffusion_rule = False self.push_rule = False self.poll_growth_rule = poll_growth_rule self.expend_rule = True self.inheritance_rule = inheritance_rule self.map = self.import_map() self.grid = MultiGrid(height, width, torus=True) self.schedule = RandomActivationByType(self) self.datacollector = DataCollector({'Pollution': (lambda m: m.total_pollution), 'Wealth': (lambda m: m.total_wealth/m.init_agents), 'Agents': (lambda m: len(m.schedule.agents_by_type[ScapeAgent]))}, {'Wealth': self.collect_wealth, 'Metabolism': self.collect_metabolism, 'Vision': self.collect_vision}) self.total_wealth = 0 self.total_pollution = 0 self.populate_sugar() self.populate_agents() def step(self): ''' Step method run by the visualization module''' self.schedule.step([ScapeAgent, SugarPatch]) self.datacollector.collect(self) # if self.schedule.time == 20: # self.pollution_rule = True if self.schedule.time == 30: self.push_rule = True self.total_wealth = 0 self.total_pollution = 0 for agent in self.schedule.agents_by_type[ScapeAgent]: self.total_wealth += agent.wealth for patch in self.schedule.agents_by_type[SugarPatch]: self.total_pollution += patch.pollution def import_map(self): ''' Imports a text file into an array to be used when generating and placing the sugar Agents into the grid ''' f = open('Maps/sugar_map.txt', 'r') map_list = [] for line in f: num_list = line.split(' ') for num in num_list: map_list.append(int(num[0])) return map_list def new_agent(self, uid, inheritance): ''' Place a new agent on the sugarscape in order to replace a death''' free = False while not free: location = random.choice([cell for cell in self.grid.coord_iter()]) if len(location[0]) == 1: free = True pos = (location[1], location[2]) patch = self.grid.get_cell_list_contents([pos])[0] if self.inheritance_rule: if inheritance == 'rand': wealth = random.randint(1, self.max_init_sugar) else: wealth = inheritance else: wealth = random.randint(1, self.max_init_sugar) agent = ScapeAgent(uid, pos, wealth, random.randint(1,self.max_metabolism), random.randint(1,self.max_vision), random.randint(self.min_age, self.max_age), patch, self.ex_ratio, self.ex_mod) self.grid.place_agent(agent, agent.pos) self.schedule.add(agent) def populate_agents(self): ''' Place ScapeAgent's in random unoccupied locations on the grid with randomomized sets of parameters ''' cells = [(cell[1], cell[2]) for cell in self.grid.coord_iter()] for i in range(self.init_agents): uid = 'a' + str(i) location = random.choice(cells) cells.remove(location) patch = self.grid.get_cell_list_contents([location])[0] agent = ScapeAgent(uid, location, random.randint(1,self.max_init_sugar), random.randint(1,self.max_metabolism), random.randint(1,self.max_vision), random.randint(self.min_age, self.max_age), patch, self.ex_ratio, self.ex_mod) self.grid.place_agent(agent, location) self.schedule.add(agent) def populate_sugar(self): ''' Place SugarPatch's on every cell with maximum sugar content according to the imported 'sugar_map.txt' file ''' map_i = 0 for cell in self.grid.coord_iter(): x = cell[1] y = cell[2] uid = 's'+str(y)+str(x) # patch = SugarPatch(uid, (x,y), 3) patch = SugarPatch(uid, (x,y), self.map[map_i], self.init_poll) self.grid.place_agent(patch, (x,y)) self.schedule.add(patch) map_i += 1 def collect_wealth(self, agent): '''Method for datacollector''' if isinstance(agent, ScapeAgent): return agent.wealth def collect_metabolism(self, agent): '''Method for datacollector''' if isinstance(agent, ScapeAgent): return agent.metabolism def collect_vision(self, agent): '''Method for datacollector''' if isinstance(agent, ScapeAgent): return agent.vision def calc_gini(self, wealths): '''Returns gini coefficient''' sort_wealths = sorted(wealths) num_agents = len(sort_wealths) gini,count = 0,0 for wealth in sort_wealths: gini += wealth * (num_agents - count) count += 1 gini /= (num_agents*sum(sort_wealths)) return num_agents**(-1) - 2*gini + 1
class Movement(Model): def __init__(self, width = 0, height = 0, torus = False, time = 0, step_in_year = 0, number_of_families = family_setting, number_of_monkeys = 0, monkey_birth_count = 0, monkey_death_count = 0, monkey_id_count = 0, number_of_humans = 0, grid_type = human_setting, run_type = run_setting, human_id_count = 0): # change the # of families here for graph.py, but use server.py to change # of families in the movement model # torus = False means monkey movement can't 'wrap around' edges super().__init__() self.width = width self.height = height self.time = time # time increases by 1/73 (decimal) each step self.step_in_year = step_in_year # 1-73; each step is 5 days, and 5 * 73 = 365 days in a year self.number_of_families = number_of_families self.number_of_monkeys = number_of_monkeys # total, not in each family self.monkey_birth_count = monkey_birth_count self.monkey_death_count = monkey_death_count self.monkey_id_count = monkey_id_count self.number_of_humans = number_of_humans self.grid_type = grid_type # string 'with_humans' or 'without_humans' self.run_type = run_type # string with 'normal_run' or 'first_run' self.human_id_count = human_id_count # width = self._readASCII(vegetation_file)[1] # width as listed at the beginning of the ASCII file # height = self._readASCII(vegetation_file)[2] # height as listed at the beginning of the ASCII file width = 85 height = 100 self.grid = MultiGrid(width, height, torus) # creates environmental grid, sets schedule # MultiGrid is a Mesa function that sets up the grid; options are between SingleGrid and MultiGrid # MultiGrid allows you to put multiple layers on the grid self.schedule = RandomActivation(self) # Mesa: Random vs. Staged Activation # similar to NetLogo's Ask Agents - determines order (or lack of) in which each agents act empty_masterdict = {'Outside_FNNR': [], 'Elevation_Out_of_Bound': [], 'Household': [], 'PES': [], 'Farm': [], 'Forest': [], 'Bamboo': [], 'Coniferous': [], 'Broadleaf': [], 'Mixed': [], 'Lichen': [], 'Deciduous': [], 'Shrublands': [], 'Clouds': [], 'Farmland': []} # generate land if self.run_type == 'first_run': gridlist = self._readASCII(vegetation_file)[0] # list of all coordinate values; see readASCII function gridlist2 = self._readASCII(elevation_file)[0] # list of all elevation values gridlist3 = self._readASCII(household_file)[0] # list of all household coordinate values gridlist4 = self._readASCII(pes_file)[0] # list of all PES coordinate values gridlist5 = self._readASCII(farm_file)[0] # list of all farm coordinate values gridlist6 = self._readASCII(forest_file)[0] # list of all managed forest coordinate values # The '_populate' function below builds the environmental grid. for x in [Elevation_Out_of_Bound]: self._populate(empty_masterdict, gridlist2, x, width, height) for x in [Household]: self._populate(empty_masterdict, gridlist3, x, width, height) for x in [PES]: self._populate(empty_masterdict, gridlist4, x, width, height) for x in [Farm]: self._populate(empty_masterdict, gridlist5, x, width, height) for x in [Forest]: self._populate(empty_masterdict, gridlist6, x, width, height) for x in [Bamboo, Coniferous, Broadleaf, Mixed, Lichen, Deciduous, Shrublands, Clouds, Farmland, Outside_FNNR]: self._populate(empty_masterdict, gridlist, x, width, height) self.saveLoad(empty_masterdict, 'masterdict_veg', 'save') self.saveLoad(self.grid, 'grid_veg', 'save') self.saveLoad(self.schedule, 'schedule_veg', 'save') # Pickling below load_dict = {} # placeholder for model parameters, leave this here even though it does nothing if self.grid_type == 'with_humans': empty_masterdict = self.saveLoad(load_dict, 'masterdict_veg', 'load') self.grid = self.saveLoad(self.grid, 'grid_veg', 'load') if self.grid_type == 'without_humans': empty_masterdict = self.saveLoad(load_dict, 'masterdict_without_humans', 'load') self.grid = self.saveLoad(load_dict, 'grid_without_humans', 'load') masterdict = empty_masterdict startinglist = masterdict['Broadleaf'] + masterdict['Mixed'] + masterdict['Deciduous'] # Agents will start out in high-probability areas. for coordinate in masterdict['Elevation_Out_of_Bound'] + masterdict['Household'] + masterdict['PES'] \ + masterdict['Farm'] + masterdict['Forest']: if coordinate in startinglist: startinglist.remove(coordinate) # Creation of resources (yellow dots in simulation) # These include Fuelwood, Herbs, Bamboo, etc., but right now resource type and frequency are not used if self.grid_type == 'with_humans': for line in _readCSV('hh_survey.csv')[1:]: # see 'hh_survey.csv' hh_id_match = int(line[0]) resource_name = line[1] # frequency is monthly; currently not-used frequency = float(line[2]) / 6 # divided by 6 for 5-day frequency, as opposed to 30-day (1 month) y = int(line[5]) x = int(line[6]) resource = Resource(_readCSV('hh_survey.csv')[1:].index(line), self, (x, y), hh_id_match, resource_name, frequency) self.grid.place_agent(resource, (int(x), int(y))) resource_dict.setdefault(hh_id_match, []).append(resource) if self.run_type == 'first_run': self.saveLoad(resource_dict, 'resource_dict', 'save') # Creation of land parcels land_parcel_count = 0 # individual land parcels in each household (non-gtgp and gtgp) for line in _readCSV('hh_land.csv')[2:]: # exclude headers; for each household: age_1 = float(line[45]) gender_1 = float(line[46]) education_1 = float(line[47]) hh_id = int(line[0]) hh_size = 0 # calculate later total_rice = float(line[41]) if total_rice in [-2, -3, -4]: total_rice = 0 gtgp_rice = float(line[42]) if gtgp_rice in [-2, -3, -4]: gtgp_rice = 0 total_dry = float(line[43]) if total_dry in [-2, -3, -4]: total_dry = 0 gtgp_dry = float(line[44]) if gtgp_dry in [-2, -3, -4]: gtgp_dry = 0 # non_gtgp_area = float(total_rice) + float(total_dry) - float(gtgp_dry) - float(gtgp_rice) # gtgp_area = float(gtgp_dry) + float(gtgp_rice) for i in range(1, 6): # for each household, which has up to 5 each of possible non-GTGP and GTGP parcels: # non_gtgp_area = float(line[i + 47].replace("\"","")) # gtgp_area = float(line[i + 52].replace("\"","")) non_gtgp_area = float(total_rice) + float(total_dry) - float(gtgp_dry) - float(gtgp_rice) gtgp_area = float(gtgp_dry) + float(gtgp_rice) if gtgp_area in [-2, -3, -4]: gtgp_area = 0 if non_gtgp_area in [-2, -3, -4]: non_gtgp_area = 0 if non_gtgp_area > 0: gtgp_enrolled = 0 non_gtgp_output = float(line[i].replace("\"","")) pre_gtgp_output = 0 land_time = float(line[i + 25].replace("\"","")) # non-gtgp travel time plant_type = float(line[i + 10].replace("\"","")) # non-gtgp plant type land_type = float(line[i + 30].replace("\"","")) # non-gtgp land type if land_type not in [-2, -3, -4]: land_parcel_count += 1 if non_gtgp_output in [-3, '-3', -4, '-4']: non_gtgp_output = 0 if pre_gtgp_output in [-3, '-3', -4, '-4']: pre_gtgp_output = 0 lp = Land(land_parcel_count, self, hh_id, gtgp_enrolled, age_1, gender_1, education_1, gtgp_dry, gtgp_rice, total_dry, total_rice, land_type, land_time, plant_type, non_gtgp_output, pre_gtgp_output, hh_size, non_gtgp_area, gtgp_area) self.schedule.add(lp) if gtgp_area > 0: gtgp_enrolled = 1 pre_gtgp_output = 0 non_gtgp_output = float(line[i].replace("\"","")) land_time = float(line[i + 20].replace("\"","")) # gtgp travel time plant_type = float(line[i + 15].replace("\"","")) # gtgp plant type land_type = float(line[i + 35].replace("\"","")) # gtgp land type if land_type not in [-3, '-3', -4, '-4']: land_parcel_count += 1 if non_gtgp_output in [-3, '-3', -4, '-4']: non_gtgp_output = 0 if pre_gtgp_output in [-3, '-3', -4, '-4']: pre_gtgp_output = 0 lp = Land(land_parcel_count, self, hh_id, gtgp_enrolled, age_1, gender_1, education_1, gtgp_dry, gtgp_rice, total_dry, total_rice, land_type, land_time, plant_type, non_gtgp_output, pre_gtgp_output, hh_size, non_gtgp_area, gtgp_area) self.schedule.add(lp) # Creation of humans (brown dots in simulation) self.number_of_humans = 0 self.human_id_count = 0 line_counter = 0 for line in _readCSV('hh_citizens.csv')[1:]: # exclude headers; for each household: hh_id = int(line[0]) line_counter += 1 starting_position = (int(_readCSV('household.csv')[line_counter][4]), int(_readCSV('household.csv')[line_counter][3])) try: resource = random.choice(resource_dict[str(hh_id)]) # random resource point for human resource_position = resource.position resource_frequency = resource.frequency # to travel to, among the list of resource points reported by that household; may change later # to another randomly-picked resource except KeyError: resource_position = starting_position # some households don't collect resources resource_frequency = 0 hh_gender_list = line[1:10] hh_age_list = line[10:19] hh_education_list = line[19:28] hh_marriage_list = line[28:37] # creation of non-migrants for list_item in hh_age_list: if str(list_item) == '-3' or str(list_item) == '': hh_age_list.remove(list_item) for x in range(len(hh_age_list) - 1): person = [] for item in [hh_age_list, hh_gender_list, hh_education_list, hh_marriage_list]: person.append(item[x]) age = float(person[0]) gender = int(person[1]) education = int(person[2]) marriage = int(person[3]) if marriage != 1: marriage = 6 if 15 < age < 59: work_status = 1 elif 7 < age < 15: work_status = 5 else: work_status = 6 mig_years = 0 migration_network = int(line[37]) income_local_off_farm = int(line[57]) resource_check = 0 mig_remittances = int(line[48]) past_hh_id = hh_id migration_status = 0 death_rate = 0 gtgp_part = 0 non_gtgp_area = 0 if str(gender) == '1': if 0 < age <= 10: age_category = 0 elif 10 < age <= 20: age_category = 1 elif 20 < age <= 30: age_category = 2 elif 30 < age <= 40: age_category = 3 elif 40 < age <= 50: age_category = 4 elif 50 < age <= 60: age_category = 5 elif 60 < age <= 70: age_category = 6 elif 70 < age <= 80: age_category = 7 elif 80 < age <= 90: age_category = 8 elif 90 < age: age_category = 9 elif str(gender) != "1": if 0 < age <= 10: age_category = 10 elif 10 < age <= 20: age_category = 11 elif 20 < age <= 30: age_category = 12 elif 30 < age <= 40: age_category = 13 elif 40 < age <= 50: age_category = 14 elif 50 < age <= 60: age_category = 15 elif 60 < age <= 70: age_category = 16 elif 70 < age <= 80: age_category = 17 elif 80 < age <= 90: age_category = 18 elif 90 < age: age_category = 19 children = 0 if gender == 2: if marriage == 1 and age < 45: children = random.randint(0, 4) # might already have kids birth_plan_chance = random.random() if birth_plan_chance < 0.03125: birth_plan = 0 elif 0.03125 <= birth_plan_chance < 0.1875: birth_plan = 1 elif 0.1875 <= birth_plan_chance < 0.5: birth_plan = 2 elif 0.5 <= birth_plan_chance < 0.8125: birth_plan = 3 elif 0.8125 <= birth_plan_chance < 0.96875: birth_plan = 4 else: birth_plan = 5 elif gender != 2: birth_plan = 0 last_birth_time = random.uniform(0, 1) human_demographic_structure_list[age_category] += 1 if str(person[0]) != '' and str(person[0]) != '-3' and str(person[1]) != '-3': # sorts out all blanks self.number_of_humans += 1 self.human_id_count += 1 human = Human(self.human_id_count, self, starting_position, hh_id, age, # creates human resource_check, starting_position, resource_position, resource_frequency, gender, education, work_status, marriage, past_hh_id, mig_years, migration_status, gtgp_part, non_gtgp_area, migration_network, mig_remittances, income_local_off_farm, last_birth_time, death_rate, age_category, children, birth_plan) if self.grid_type == 'with_humans': self.grid.place_agent(human, starting_position) self.schedule.add(human) # creation of migrant hh_migrants = line[38:43] # age, gender, marriage, education of migrants if str(hh_migrants[0]) != '' and str(hh_migrants[0]) != '-3'\ and str(hh_migrants[1]) != '' and str(hh_migrants[1]) != '-3': # if that household has any migrants, create migrant person self.number_of_humans += 1 self.human_id_count += 1 age = float(hh_migrants[0]) gender = float(hh_migrants[1]) education = int(hh_migrants[2]) marriage = int(hh_migrants[3]) mig_years = int(hh_migrants[4]) if 15 < age < 59: work_status = 1 elif 7 < age < 15: work_status = 5 else: work_status = 6 past_hh_id = hh_id hh_id = 'Migrated' migration_status = 1 migration_network = int(line[37]) last_birth_time = random.uniform(0, 1) total_rice = float(line[43]) gtgp_rice = float(line[44]) total_dry = float(line[45]) gtgp_dry = float(line[46]) income_local_off_farm = float(line[57]) if total_rice in ['-3', '-4', -3, None]: total_rice = 0 if total_dry in ['-3', '-4', -3, None]: total_dry = 0 if gtgp_dry in ['-3', '-4', -3, None]: gtgp_dry = 0 if gtgp_rice in ['-3', '-4', -3, None]: gtgp_rice = 0 if (gtgp_dry + gtgp_rice) != 0: gtgp_part = 1 else: gtgp_part = 0 non_gtgp_area = ((total_rice) + (total_dry)) \ - ((gtgp_dry) + (gtgp_rice)) resource_check = 0 mig_remittances = int(line[48]) death_rate = 0 if gender == 1: # human male (monkeys are 0 and 1, humans are 1 and 2) if 0 < age <= 10: age_category = 0 elif 10 < age <= 20: age_category = 1 elif 20 < age <= 30: age_category = 2 elif 30 < age <= 40: age_category = 3 elif 40 < age <= 50: age_category = 4 elif 50 < age <= 60: age_category = 5 elif 60 < age <= 70: age_category = 6 elif 70 < age <= 80: age_category = 7 elif 80 < age <= 90: age_category = 8 elif 90 < age: age_category = 9 elif gender != 1: if 0 < age <= 10: age_category = 10 elif 10 < age <= 20: age_category = 11 elif 20 < age <= 30: age_category = 12 elif 30 < age <= 40: age_category = 13 elif 40 < age <= 50: age_category = 14 elif 50 < age <= 60: age_category = 15 elif 60 < age <= 70: age_category = 16 elif 70 < age <= 80: age_category = 17 elif 80 < age <= 90: age_category = 18 elif 90 < age: age_category = 19 children = 0 if gender == 2: if marriage == 1 and age < 45: children = random.randint(0, 4) # might already have kids birth_plan_chance = random.random() if birth_plan_chance < 0.03125: birth_plan = 0 elif 0.03125 <= birth_plan_chance < 0.1875: birth_plan = 1 elif 0.1875 <= birth_plan_chance < 0.5: birth_plan = 2 elif 0.5 <= birth_plan_chance < 0.8125: birth_plan = 3 elif 0.8125 <= birth_plan_chance < 0.96875: birth_plan = 4 else: birth_plan = 5 elif gender != 2: birth_plan = 0 human_demographic_structure_list[age_category] += 1 human = Human(self.human_id_count, self, starting_position, hh_id, age, # creates human resource_check, starting_position, resource_position, resource_frequency, gender, education, work_status, marriage, past_hh_id, mig_years, migration_status, gtgp_part, non_gtgp_area, migration_network, mig_remittances, income_local_off_farm, last_birth_time, death_rate, age_category, children, birth_plan) if self.grid_type == 'with_humans': self.grid.place_agent(human, starting_position) self.schedule.add(human) # Creation of monkey families (moving agents in the visualization) for i in range(self.number_of_families): # the following code block creates families starting_position = random.choice(startinglist) saved_position = starting_position from families import Family family_size = random.randint(25, 45) # sets family size for each group--random integer family_id = i list_of_family_members = [] family_type = 'traditional' # as opposed to an all-male subgroup split_flag = 0 # binary: 1 means its members start migrating out to a new family family = Family(family_id, self, starting_position, family_size, list_of_family_members, family_type, saved_position, split_flag) self.grid.place_agent(family, starting_position) self.schedule.add(family) global_family_id_list.append(family_id) # Creation of individual monkeys (not in the visualization submodel, but for the demographic submodel) for monkey_family_member in range(family_size): # creates the amount of monkeys indicated earlier id = self.monkey_id_count gender = random.randint(0, 1) if gender == 1: # gender = 1 is female, gender = 0 is male. this is different than with humans (1 or 2) female_list.append(id) last_birth_interval = random.uniform(0, 2) else: male_maingroup_list.append(id) # as opposed to the all-male subgroup last_birth_interval = -9999 # males will never give birth mother = 0 # no parent check for first generation choice = random.random() # 0 - 1 float - age is determined randomly based on weights if choice <= 0.11: # 11% of starting monkey population age = random.uniform(0, 1) # are randomly aged befween age_category = 0 # ages 0-1 demographic_structure_list[0] += 1 elif 0.11 < choice <= 0.27: # 16% of starting monkey population age = random.uniform(1, 3) # are randomly aged befween age_category = 1 # ages 1-3 demographic_structure_list[1] += 1 elif 0.27 < choice <= 0.42: # 15% of starting monkey population age = random.uniform(3, 7) # are randomly aged between age_category = 2 # ages 3-7 demographic_structure_list[2] += 1 elif 0.42 < choice <= 0.62: # 11% of starting monkey population age = random.uniform(7, 10) # are randomly aged befween age_category = 3 # ages 7-10 demographic_structure_list[3] += 1 elif 0.62 < choice <= 0.96: # 34% of starting monkey population age = random.uniform(10, 25) # are randomly aged befween age_category = 4 # ages 10-25 demographic_structure_list[4] += 1 if gender == 1: if id not in reproductive_female_list: reproductive_female_list.append(id) # starting representation of male defection/gender ratio structure_convert = random.random() if gender == 0: if structure_convert < 0.6: gender = 1 last_birth_interval = random.uniform(0, 3) if id not in reproductive_female_list: reproductive_female_list.append(id) elif 0.96 < choice: # 4% of starting monkey population age = random.uniform(25, 30) # are randomly aged between age_category = 5 # ages 25-30 demographic_structure_list[5] += 1 gender = 1 monkey = Monkey(id, self, gender, age, age_category, family, last_birth_interval, mother ) self.number_of_monkeys += 1 self.monkey_id_count += 1 list_of_family_members.append(monkey.unique_id) self.schedule.add(monkey) def step(self): # necessary; tells model to move forward self.time += (1/73) self.step_in_year += 1 if self.step_in_year > 73: self.step_in_year = 1 # start new year self.schedule.step() def _readASCII(self, text): # reads in a text file that determines the environmental grid setup f = open(text, 'r') body = f.readlines() width = body[0][-4:] # last 4 characters of line that contains the 'width' value height = body[1][-5:] abody = body[6:] # ASCII file with a header f.close() abody = reversed(abody) cells = [] for line in abody: cells.append(line.split(" ")) return [cells, int(width), int(height)] def _populate(self, masterdict, grid, land_type, width, height): # places land tiles on the grid - connects color/land cover category with ASCII file values counter = 0 # sets agent ID - not currently used for y in range(height): # for each pixel, for x in range(width): value = float(grid[y][x]) # value from the ASCII file for that coordinate/pixel, e.g. 1550 elevation land_grid_coordinate = x, y land = land_type(counter, self) if land_type.__name__ == 'Elevation_Out_of_Bound': if (value < land_type.lower_bound or value > land_type.upper_bound) and value != -9999: # if elevation is not 1000-2200, but is within the bounds of the FNNR, mark as 'elevation OOB' self.grid.place_agent(land, land_grid_coordinate) masterdict[land.__class__.__name__].append(land_grid_coordinate) counter += 1 elif land_type.__name__ == 'Forest': if land_type.type == value: self.grid.place_agent(land, land_grid_coordinate) masterdict[land.__class__.__name__].append(land_grid_coordinate) counter += 1 elif land_type.__name__ == 'PES': if land_type.type == value: self.grid.place_agent(land, land_grid_coordinate) masterdict[land.__class__.__name__].append(land_grid_coordinate) counter += 1 elif land_type.__name__ == 'Farm': if land_type.type == value: self.grid.place_agent(land, land_grid_coordinate) masterdict[land.__class__.__name__].append(land_grid_coordinate) counter += 1 elif land_type.__name__ == 'Household': if land_type.type == value: self.grid.place_agent(land, land_grid_coordinate) masterdict[land.__class__.__name__].append(land_grid_coordinate) counter += 1 else: # vegetation background if land_type.type == value: self.grid.place_agent(land, land_grid_coordinate) masterdict[land.__class__.__name__].append(land_grid_coordinate) counter += 1 def saveLoad(self, pickled_file, name, option): """ This function pickles an object, which lets it be loaded easily later. I haven't figured out how to utilize pickle to pickle class objects (if possible). """ if option == "save": f = open(name, 'wb') pickle.dump(pickled_file, f) f.close() elif option == "load": f = open(name, 'rb') new_pickled_file = pickle.load(f) return new_pickled_file else: print('Invalid saveLoad option')