Esempio n. 1
0
def makeplot(plotfile, variable, outfile):

    myg, myd = patch.read(plotfile)

    if variable == "vort":
        vx = myd.get_var("x-velocity")
        vy = myd.get_var("y-velocity")

        v = myg.scratch_array()

        v[myg.ilo:myg.ihi+1,myg.jlo:myg.jhi+1] = \
             0.5*(vy[myg.ilo+1:myg.ihi+2,myg.jlo:myg.jhi+1] -
                  vy[myg.ilo-1:myg.ihi,myg.jlo:myg.jhi+1])/myg.dx - \
             0.5*(vx[myg.ilo:myg.ihi+1,myg.jlo+1:myg.jhi+2] -
                  vx[myg.ilo:myg.ihi+1,myg.jlo-1:myg.jhi])/myg.dy

    else:
        v = myd.get_var(variable)

    plt.figure(num=1, figsize=(6.0, 6.0), dpi=100, facecolor='w')

    plt.imshow(np.transpose(v[myg.ilo:myg.ihi + 1, myg.jlo:myg.jhi + 1]),
               interpolation="nearest",
               origin="lower",
               extent=[myg.xmin, myg.xmax, myg.ymin, myg.ymax])

    plt.axis("off")
    plt.subplots_adjust(bottom=0.0, top=1.0, left=0.0, right=1.0)
    plt.savefig(outfile)
Esempio n. 2
0
def makeplot(plotfile_name, solver_name, outfile, width, height):
    """ plot the data in a plotfile using the solver's vis() method """

    _, myd = patch.read(plotfile_name)

    solver = importlib.import_module(solver_name)

    sim = solver.Simulation(solver_name, None, None)
    sim.cc_data = myd

    plt.figure(num=1, figsize=(width, height), dpi=100, facecolor='w')

    sim.dovis()
    if outfile.endswith(".pdf"):
        plt.savefig(outfile, bbox_inches="tight")
    else:
        plt.savefig(outfile)
    plt.show()
Esempio n. 3
0
def makeplot(plotfile, variable, outfile):

    myg, myd = patch.read(plotfile)

    plt.figure(num=1, figsize=(6.5, 5.25), dpi=100, facecolor='w')

    var = myd.get_var(variable)

    img = plt.imshow(np.transpose(var.v()),
                     interpolation="nearest",
                     origin="lower",
                     extent=[myg.xmin, myg.xmax, myg.ymin, myg.ymax])

    plt.colorbar()

    plt.xlabel("x")
    plt.ylabel("y")

    plt.savefig(outfile, bbox_inches="tight")
    plt.show()
Esempio n. 4
0
optional arguments:
  -h, --help    show this help message and exit
  -o image.png  output image name. The extension .png will generate a PNG
                file, .eps will generate an EPS file (default: plot.png).
"""
    print usage
    sys.exit()


if __name__== "__main__":

    try: opts, next = getopt.getopt(sys.argv[1:], "o:h")
    except getopt.GetoptError:
        sys.exit("invalid calling sequence")

    outfile = "plot.png"

    for o, a in opts:
        if o == "-h": usage()
        if o == "-o": outfile = a

    try: file = next[0]
    except: usage()

    try: variable = next[1]
    except: usage()

    myg, myd = patch.read(file)

    makeplot(myd, variable, outfile)
Esempio n. 5
0
def doit(solver_name, problem_name, param_file,
         other_commands=None,
         comp_bench=False, make_bench=False):

    msg.bold('pyro ...')

    tc = profile.TimerCollection()

    tm_main = tc.timer("main")
    tm_main.begin()

    # import desired solver under "solver" namespace
    solver = importlib.import_module(solver_name)

    #-------------------------------------------------------------------------
    # runtime parameters
    #-------------------------------------------------------------------------

    # parameter defaults
    rp = runparams.RuntimeParameters()
    rp.load_params("_defaults")
    rp.load_params(solver_name + "/_defaults")

    # problem-specific runtime parameters
    rp.load_params(solver_name + "/problems/_" + problem_name + ".defaults")

    # now read in the inputs file
    if not os.path.isfile(param_file):
        # check if the param file lives in the solver's problems directory
        param_file = solver_name + "/problems/" + param_file
        if not os.path.isfile(param_file):
            msg.fail("ERROR: inputs file does not exist")

    rp.load_params(param_file, no_new=1)

    # and any commandline overrides
    if not other_commands == None:
        rp.command_line_params(other_commands)

    # write out the inputs.auto
    rp.print_paramfile()


    #-------------------------------------------------------------------------
    # initialization
    #-------------------------------------------------------------------------

    # initialize the Simulation object -- this will hold the grid and
    # data and know about the runtime parameters and which problem we
    # are running
    sim = solver.Simulation(solver_name, problem_name, rp, timers=tc)

    sim.initialize()
    sim.preevolve()


    #-------------------------------------------------------------------------
    # evolve
    #-------------------------------------------------------------------------
    init_tstep_factor = rp.get_param("driver.init_tstep_factor")
    max_dt_change = rp.get_param("driver.max_dt_change")
    fix_dt = rp.get_param("driver.fix_dt")

    verbose = rp.get_param("driver.verbose")

    plt.ion()

    sim.cc_data.t = 0.0

    # output the 0th data
    basename = rp.get_param("io.basename")
    sim.cc_data.write("{}{:04d}".format(basename, sim.n))

    dovis = rp.get_param("vis.dovis")
    if dovis:
        plt.figure(num=1, figsize=(8,6), dpi=100, facecolor='w')
        sim.dovis()

    while not sim.finished():

        # fill boundary conditions
        sim.cc_data.fill_BC_all()

        # get the timestep
        if fix_dt > 0.0:
            sim.dt = fix_dt
        else:
            sim.compute_timestep()
            if sim.n == 0:
                sim.dt = init_tstep_factor*sim.dt
            else:
                sim.dt = min(max_dt_change*dt_old, sim.dt)
            dt_old = sim.dt

        if sim.cc_data.t + sim.dt > sim.tmax:
            sim.dt = sim.tmax - sim.cc_data.t

        # evolve for a single timestep
        sim.evolve()

        if verbose > 0: print("%5d %10.5f %10.5f" % (sim.n, sim.cc_data.t, sim.dt))

        # output
        if sim.do_output():
            if verbose > 0: msg.warning("outputting...")
            basename = rp.get_param("io.basename")
            sim.cc_data.write("{}{:04d}".format(basename, sim.n))

        # visualization
        if dovis:
            tm_vis = tc.timer("vis")
            tm_vis.begin()

            sim.dovis()
            store = rp.get_param("vis.store_images")

            if store == 1:
                basename = rp.get_param("io.basename")
                plt.savefig("{}{:04d}.png".format(basename, sim.n))

            tm_vis.end()

    tm_main.end()


    #-------------------------------------------------------------------------
    # benchmarks (for regression testing)
    #-------------------------------------------------------------------------
    # are we comparing to a benchmark?
    if comp_bench:
        compare_file = solver_name + "/tests/" + basename + "%4.4d" % (sim.n)
        msg.warning("comparing to: %s " % (compare_file) )
        try: bench_grid, bench_data = patch.read(compare_file)
        except:
            msg.warning("ERROR openning compare file")
            return "ERROR openning compare file"


        result = compare.compare(sim.cc_data.grid, sim.cc_data, bench_grid, bench_data)

        if result == 0:
            msg.success("results match benchmark\n")
        else:
            msg.warning("ERROR: " + compare.errors[result] + "\n")


    # are we storing a benchmark?
    if make_bench:
        if not os.path.isdir(solver_name + "/tests/"):
            try: os.mkdir(solver_name + "/tests/")
            except:
                msg.fail("ERROR: unable to create the solver's tests/ directory")

        bench_file = solver_name + "/tests/" + basename + "%4.4d" % (sim.n)
        msg.warning("storing new benchmark: {}\n".format(bench_file))
        sim.cc_data.write(bench_file)


    #-------------------------------------------------------------------------
    # final reports
    #-------------------------------------------------------------------------
    if verbose > 0: rp.print_unused_params()
    if verbose > 0: tc.report()

    sim.finalize()

    if comp_bench:
        return result
    else:
        return None
Esempio n. 6
0
def test_poisson_dirichlet(N,
                           store_bench=False,
                           comp_bench=False,
                           make_plot=False,
                           verbose=1):

    # test the multigrid solver
    nx = N
    ny = nx

    # create the multigrid object
    a = MG.CellCenterMG2d(nx,
                          ny,
                          xl_BC_type="dirichlet",
                          yl_BC_type="dirichlet",
                          xr_BC_type="dirichlet",
                          yr_BC_type="dirichlet",
                          verbose=verbose)

    # initialize the solution to 0
    a.init_zeros()

    # initialize the RHS using the function f
    rhs = f(a.x2d, a.y2d)
    a.init_RHS(rhs)

    # solve to a relative tolerance of 1.e-11
    a.solve(rtol=1.e-11)

    # alternately, we can just use smoothing by uncommenting the following
    #a.smooth(a.nlevels-1,50000)

    # get the solution
    v = a.get_solution()

    # compute the error from the analytic solution
    b = true(a.x2d, a.y2d)
    e = v - b

    print(" L2 error from true solution = %g\n rel. err from previous cycle = %g\n num. cycles = %d" % \
          (e.norm(), a.relative_error, a.num_cycles))

    # plot it
    if make_plot:
        plt.figure(num=1, figsize=(5.0, 5.0), dpi=100, facecolor='w')

        plt.imshow(np.transpose(v[a.ilo:a.ihi + 1, a.jlo:a.jhi + 1]),
                   interpolation="nearest",
                   origin="lower",
                   extent=[a.xmin, a.xmax, a.ymin, a.ymax])

        plt.xlabel("x")
        plt.ylabel("y")

        plt.savefig("mg_test.png")

    # store the output for later comparison
    bench = "mg_poisson_dirichlet"
    bench_dir = os.environ["PYRO_HOME"] + "/multigrid/tests/"

    my_data = a.get_solution_object()

    if store_bench:
        my_data.write("{}/{}".format(bench_dir, bench))

    # do we do a comparison?
    if comp_bench:
        compare_file = "{}/{}".format(bench_dir, bench)
        msg.warning("comparing to: %s " % (compare_file))
        bench_grid, bench_data = patch.read(compare_file)

        result = compare.compare(my_data.grid, my_data, bench_grid, bench_data)

        if result == 0:
            msg.success("results match benchmark\n")
        else:
            msg.warning("ERROR: " + compare.errors[result] + "\n")

        return result

    return None
Esempio n. 7
0
def test_vc_poisson_dirichlet(N,
                              store_bench=False,
                              comp_bench=False,
                              make_plot=False,
                              verbose=1):
    """
    test the variable-coefficient MG solver.  The return value
    here is the error compared to the exact solution, UNLESS
    comp_bench=True, in which case the return value is the
    error compared to the stored benchmark
    """

    # test the multigrid solver
    nx = N
    ny = nx

    # create the coefficient variable
    g = patch.Grid2d(nx, ny, ng=1)
    d = patch.CellCenterData2d(g)
    bc_c = patch.BCObject(xlb="neumann",
                          xrb="neumann",
                          ylb="neumann",
                          yrb="neumann")
    d.register_var("c", bc_c)
    d.create()

    c = d.get_var("c")
    c.d[:, :] = alpha(g.x2d, g.y2d)

    # create the multigrid object
    a = MG.VarCoeffCCMG2d(nx,
                          ny,
                          xl_BC_type="dirichlet",
                          yl_BC_type="dirichlet",
                          xr_BC_type="dirichlet",
                          yr_BC_type="dirichlet",
                          coeffs=c,
                          coeffs_bc=bc_c,
                          verbose=verbose,
                          vis=0,
                          true_function=true)

    # initialize the solution to 0
    a.init_zeros()

    # initialize the RHS using the function f
    rhs = f(a.x2d, a.y2d)
    a.init_RHS(rhs)

    # solve to a relative tolerance of 1.e-11
    a.solve(rtol=1.e-11)

    # alternately, we can just use smoothing by uncommenting the following
    #a.smooth(a.nlevels-1,50000)

    # get the solution
    v = a.get_solution()

    # compute the error from the analytic solution
    b = true(a.x2d, a.y2d)
    e = v - b

    enorm = e.norm()
    print(" L2 error from true solution = %g\n rel. err from previous cycle = %g\n num. cycles = %d" % \
          (enorm, a.relative_error, a.num_cycles))

    # plot the solution
    if make_plot:
        plt.clf()

        plt.figure(figsize=(10.0, 4.0), dpi=100, facecolor='w')

        plt.subplot(121)

        plt.imshow(np.transpose(v.v()),
                   interpolation="nearest",
                   origin="lower",
                   extent=[a.xmin, a.xmax, a.ymin, a.ymax])

        plt.xlabel("x")
        plt.ylabel("y")
        plt.title("nx = {}".format(nx))

        plt.colorbar()

        plt.subplot(122)

        plt.imshow(np.transpose(e.v()),
                   interpolation="nearest",
                   origin="lower",
                   extent=[a.xmin, a.xmax, a.ymin, a.ymax])

        plt.xlabel("x")
        plt.ylabel("y")
        plt.title("error")

        plt.colorbar()

        plt.tight_layout()

        plt.savefig("mg_vc_dirichlet_test.png")

    # store the output for later comparison
    bench = "mg_vc_poisson_dirichlet"
    bench_dir = os.environ["PYRO_HOME"] + "/multigrid/tests/"

    my_data = a.get_solution_object()

    if store_bench:
        my_data.write("{}/{}".format(bench_dir, bench))

    # do we do a comparison?
    if comp_bench:
        compare_file = "{}/{}".format(bench_dir, bench)
        msg.warning("comparing to: %s " % (compare_file))
        bench_grid, bench_data = patch.read(compare_file)

        result = compare.compare(my_data.grid, my_data, bench_grid, bench_data)

        if result == 0:
            msg.success("results match benchmark\n")
        else:
            msg.warning("ERROR: " + compare.errors[result] + "\n")

        return result

    # normal return -- error wrt true solution
    return enorm
Esempio n. 8
0
            basename = rp.get_param("io.basename")
            pylab.savefig(basename + "%4.4d" % (n) + ".png")

        tm_vis.end()

tm_main.end()


#-----------------------------------------------------------------------------
# benchmarks (for regression testing)
#-----------------------------------------------------------------------------
# are we comparing to a benchmark?
if comp_bench:
    compare_file = solver_name + "/tests/" + basename + "%4.4d" % (n)
    msg.warning("comparing to: %s " % (compare_file) )
    bench_grid, bench_data = patch.read(compare_file)

    result = compare.compare(sim.cc_data.grid, sim.cc_data, bench_grid, bench_data)
    
    if result == 0:
        msg.success("results match benchmark\n")
    else:
        msg.fail("ERROR: " + compare.errors[result] + "\n")


# are we storing a benchmark?
if make_bench:
    bench_file = solver_name + "/tests/" + basename + "%4.4d" % (n)
    msg.warning("storing new benchmark: %s\n " % (bench_file) )
    sim.cc_data.write(bench_file)
    
def test_general_poisson_inhomogeneous(N, store_bench=False, comp_bench=False,
                                       make_plot=False, verbose=1):
    """
    test the general MG solver.  The return value
    here is the error compared to the exact solution, UNLESS
    comp_bench=True, in which case the return value is the
    error compared to the stored benchmark
    """

    # test the multigrid solver
    nx = N
    ny = nx


    # create the coefficient variable
    g = patch.Grid2d(nx, ny, ng=1)
    d = patch.CellCenterData2d(g)
    bc_c = patch.BCObject(xlb="neumann", xrb="neumann",
                          ylb="neumann", yrb="neumann")
    d.register_var("alpha", bc_c)
    d.register_var("beta", bc_c)
    d.register_var("gamma_x", bc_c)
    d.register_var("gamma_y", bc_c)
    d.create()

    a = d.get_var("alpha")
    a[:,:] = alpha(g.x2d, g.y2d)

    b = d.get_var("beta")
    b[:,:] = beta(g.x2d, g.y2d)

    gx = d.get_var("gamma_x")
    gx[:,:] = gamma_x(g.x2d, g.y2d)

    gy = d.get_var("gamma_y")
    gy[:,:] = gamma_y(g.x2d, g.y2d)

    
    # create the multigrid object
    a = MG.GeneralMG2d(nx, ny,
                       xl_BC_type="dirichlet", yl_BC_type="dirichlet",
                       xr_BC_type="dirichlet", yr_BC_type="dirichlet",
                       xl_BC=xl_func,
                       yl_BC=yl_func,
                       coeffs=d,
                       verbose=verbose, vis=0, true_function=true)


    # initialize the solution to 0
    a.init_zeros()

    # initialize the RHS using the function f
    rhs = f(a.x2d, a.y2d)
    print( np.min(rhs), np.max(rhs))

    a.init_RHS(rhs)

    # solve to a relative tolerance of 1.e-10
    a.solve(rtol=1.e-10)

    # alternately, we can just use smoothing by uncommenting the following
    #a.smooth(a.nlevels-1,50000)

    # get the solution
    v = a.get_solution()

    # compute the error from the analytic solution
    b = true(a.x2d,a.y2d)
    e = v - b

    enorm = a.soln_grid.norm(e)
    print(" L2 error from true solution = %g\n rel. err from previous cycle = %g\n num. cycles = %d" % \
          (enorm, a.relative_error, a.num_cycles))


    # plot the solution
    if make_plot:
        plt.clf()

        plt.figure(figsize=(10.0,4.0), dpi=100, facecolor='w')

        plt.subplot(121)

        plt.imshow(np.transpose(v[a.ilo:a.ihi+1,a.jlo:a.jhi+1]),
                   interpolation="nearest", origin="lower",
                   extent=[a.xmin, a.xmax, a.ymin, a.ymax])

        plt.xlabel("x")
        plt.ylabel("y")
        plt.title("nx = {}".format(nx))

        plt.colorbar()


        plt.subplot(122)

        plt.imshow(np.transpose(e[a.ilo:a.ihi+1,a.jlo:a.jhi+1]),
                   interpolation="nearest", origin="lower",
                   extent=[a.xmin, a.xmax, a.ymin, a.ymax])

        plt.xlabel("x")
        plt.ylabel("y")
        plt.title("error")

        plt.colorbar()

        plt.tight_layout()

        plt.savefig("mg_general_inhomogeneous_test.png")

    # store the output for later comparison
    bench = "mg_general_poisson_inhomogeneous"
    bench_dir = os.environ["PYRO_HOME"] + "/multigrid/tests/"

    my_data = a.get_solution_object()
    
    if store_bench:
        my_data.write("{}/{}".format(bench_dir, bench))

    # do we do a comparison?
    if comp_bench:
        compare_file = "{}/{}".format(bench_dir, bench)
        msg.warning("comparing to: %s " % (compare_file) )
        bench_grid, bench_data = patch.read(compare_file)

        result = compare.compare(my_data.grid, my_data,
                                 bench_grid, bench_data)

        if result == 0:
            msg.success("results match benchmark\n")
        else:
            msg.warning("ERROR: " + compare.errors[result] + "\n")

        return result

    
    # normal return -- error wrt true solution
    return enorm
Esempio n. 10
0
def test_poisson_dirichlet(N, store_bench=False, comp_bench=False,
                           make_plot=False, verbose=1):
    
    # test the multigrid solver
    nx = N
    ny = nx


    # create the multigrid object
    a = MG.CellCenterMG2d(nx, ny,
                          xl_BC_type="dirichlet", yl_BC_type="dirichlet",
                          xr_BC_type="dirichlet", yr_BC_type="dirichlet",
                          verbose=verbose)

    # initialize the solution to 0
    a.init_zeros()

    # initialize the RHS using the function f
    rhs = f(a.x2d, a.y2d)
    a.init_RHS(rhs)

    # solve to a relative tolerance of 1.e-11
    a.solve(rtol=1.e-11)

    # alternately, we can just use smoothing by uncommenting the following
    #a.smooth(a.nlevels-1,50000)

    # get the solution
    v = a.get_solution()

    # compute the error from the analytic solution
    b = true(a.x2d,a.y2d)
    e = v - b

    print(" L2 error from true solution = %g\n rel. err from previous cycle = %g\n num. cycles = %d" % \
          (a.soln_grid.norm(e), a.relative_error, a.num_cycles))


    # plot it
    if make_plot:
        plt.figure(num=1, figsize=(5.0,5.0), dpi=100, facecolor='w')

        plt.imshow(np.transpose(v[a.ilo:a.ihi+1,a.jlo:a.jhi+1]),
                   interpolation="nearest", origin="lower",
                   extent=[a.xmin, a.xmax, a.ymin, a.ymax])

        plt.xlabel("x")
        plt.ylabel("y")

        plt.savefig("mg_test.png")

        
    # store the output for later comparison
    bench = "mg_poisson_dirichlet"
    bench_dir = os.environ["PYRO_HOME"] + "/multigrid/tests/"

    my_data = a.get_solution_object()
    
    if store_bench:
        my_data.write("{}/{}".format(bench_dir, bench))

    # do we do a comparison?
    if comp_bench:
        compare_file = "{}/{}".format(bench_dir, bench)
        msg.warning("comparing to: %s " % (compare_file) )
        bench_grid, bench_data = patch.read(compare_file)

        result = compare.compare(my_data.grid, my_data, bench_grid, bench_data)

        if result == 0:
            msg.success("results match benchmark\n")
        else:
            msg.warning("ERROR: " + compare.errors[result] + "\n")

        return result

    return None
Esempio n. 11
0
if not len(sys.argv) == 3:
    print usage
    sys.exit(2)


try: file1 = sys.argv[1]
except:
    print usage
    sys.exit(2)
try: file2 = sys.argv[2]
except:
    print usage
    sys.exit(2)

myg, myd = patch.read(file1)
myg2, myd2 = patch.read(file2)

U_analytic = myg2.scratch_array()


U_numerical = myg.scratch_array()

# compute total velocity from myd
px = myd.get_var("x-momentum")
py = myd.get_var("y-momentum")
density = myd.get_var("density")
u = px/density
v = py/density

px2 = myd2.get_var("x-momentum")
Esempio n. 12
0
def process(file):

    # read the data and convert to the primitive variables (and velocity
    # magnitude)
    myg, myd = patch.read(file)

    phi_t = myd.get_var("phi")
    phi = phi_t[myg.ilo:myg.ihi + 1, myg.jlo:myg.jhi + 1]

    # get the problem parameters
    t_0 = myd.get_aux("t_0")
    phi_0 = myd.get_aux("phi_0")
    phi_max = myd.get_aux("phi_max")
    k = myd.get_aux("k")

    t = myd.t

    # radially bin

    # see http://code.google.com/p/agpy/source/browse/trunk/agpy/radialprofile.py?r=317
    # for inspiration

    # first define the bins
    rmin = 0
    rmax = np.sqrt(myg.xmax**2 + myg.ymax**2)

    nbins = np.int(np.sqrt(myg.nx**2 + myg.ny**2))

    # bins holds the edges, so there is one more value than actual bin
    # bin_centers holds the center value of the bin
    bins = np.linspace(rmin, rmax, nbins + 1)
    bin_centers = 0.5 * (bins[1:] + bins[:-1])

    # radius of each zone
    xcenter = 0.5 * (myg.xmin + myg.xmax)
    ycenter = 0.5 * (myg.ymin + myg.ymax)

    r = np.sqrt(
        (myg.x2d[myg.ilo:myg.ihi + 1, myg.jlo:myg.jhi + 1] - xcenter)**2 +
        (myg.y2d[myg.ilo:myg.ihi + 1, myg.jlo:myg.jhi + 1] - ycenter)**2)

    # bin the radii -- digitize returns an array with the same shape
    # as the input array but with elements of the array specifying
    # which bin that location belongs to.  The value of whichbin will
    # be 1 if we are located in the bin defined by bins[0] to bins[1].
    # This means that there will be no 0s
    whichbin = np.digitize(r.flat, bins)

    # bincount counts the number of occurrences of each non-negative
    # integer value in whichbin.  Each entry in ncount gives the
    # number of occurrences of it in whichbin.  The length of ncount
    # is set by the maximum value in whichbin
    ncount = np.bincount(whichbin)

    # now bin the associated data
    phi_bin = np.zeros(len(ncount) - 1, dtype=np.float64)

    for n in range(ncount):

        # remember that there are no whichbin == 0, since that
        # corresponds to the left edge.  So we want whichbin == 1 to
        # correspond to the first value of bin_centers
        # (bin_centers[0])
        phi_bin[n - 1] = np.sum(phi.flat[whichbin == n]) / np.sum(ncount[n])

    bin_centers = bin_centers[0:len(ncount) - 1]

    # get the analytic solution
    phi_exact = gaussian.phi_analytic(bin_centers, t, t_0, k, phi_0, phi_max)

    return bin_centers, phi_exact, phi_bin
Esempio n. 13
0
def test_vc_poisson_periodic(N, store_bench=False, comp_bench=False,
                             make_plot=False, verbose=1):
    """
    test the variable-coefficient MG solver.  The return value
    here is the error compared to the exact solution, UNLESS
    comp_bench=True, in which case the return value is the
    error compared to the stored benchmark
    """

    # test the multigrid solver
    nx = N
    ny = nx


    # create the coefficient variable
    g = patch.Grid2d(nx, ny, ng=1)
    d = patch.CellCenterData2d(g)
    bc_c = patch.BCObject(xlb="periodic", xrb="periodic",
                          ylb="periodic", yrb="periodic")
    d.register_var("c", bc_c)
    d.create()

    c = d.get_var("c")
    c[:,:] = alpha(g.x2d, g.y2d)

    # check whether the RHS sums to zero (necessary for periodic data)
    rhs = f(g.x2d, g.y2d)
    print("rhs sum: {}".format(np.sum(rhs[g.ilo:g.ihi+1,g.jlo:g.jhi+1])))


    # create the multigrid object
    a = MG.VarCoeffCCMG2d(nx, ny,
                          xl_BC_type="periodic", yl_BC_type="periodic",
                          xr_BC_type="periodic", yr_BC_type="periodic",
                          coeffs=c, coeffs_bc=bc_c,
                          verbose=verbose, vis=0, true_function=true)


    # initialize the solution to 0
    a.init_zeros()

    # initialize the RHS using the function f
    rhs = f(a.x2d, a.y2d)
    a.init_RHS(rhs)

    # solve to a relative tolerance of 1.e-11
    a.solve(rtol=1.e-11)

    # alternately, we can just use smoothing by uncommenting the following
    #a.smooth(a.nlevels-1,10000)

    # get the solution
    v = a.get_solution()

    # get the true solution
    b = true(a.x2d,a.y2d)

    # compute the error from the analytic solution -- note that with
    # periodic BCs all around, there is nothing to normalize the
    # solution.  We subtract off the average of phi from the MG
    # solution (we do the same for the true solution to put them on
    # the same footing)
    e = v - np.sum(v[a.ilo:a.ihi+1,a.jlo:a.jhi+1])/(nx*ny) - (b - np.sum(b[a.ilo:a.ihi+1,a.jlo:a.jhi+1])/(nx*ny))

    enorm = a.soln_grid.norm(e)
    print(" L2 error from true solution = %g\n rel. err from previous cycle = %g\n num. cycles = %d" % \
          (enorm, a.relative_error, a.num_cycles))


    # plot the solution
    if make_plot:
        plt.clf()

        plt.figure(figsize=(10.0,4.0), dpi=100, facecolor='w')

        plt.subplot(121)

        plt.imshow(np.transpose(v[a.ilo:a.ihi+1,a.jlo:a.jhi+1]),
                   interpolation="nearest", origin="lower",
                   extent=[a.xmin, a.xmax, a.ymin, a.ymax])

        plt.xlabel("x")
        plt.ylabel("y")
        plt.title("nx = {}".format(nx))

        plt.colorbar()


        plt.subplot(122)

        plt.imshow(np.transpose(e[a.ilo:a.ihi+1,a.jlo:a.jhi+1]),
                   interpolation="nearest", origin="lower",
                   extent=[a.xmin, a.xmax, a.ymin, a.ymax])

        plt.xlabel("x")
        plt.ylabel("y")
        plt.title("error")

        plt.colorbar()

        plt.tight_layout()

        plt.savefig("mg_vc_periodic_test.png")


    # store the output for later comparison
    bench = "mg_vc_poisson_periodic"
    bench_dir = os.environ["PYRO_HOME"] + "/multigrid/tests/"

    my_data = a.get_solution_object()

    if store_bench:
        my_data.write("{}/{}".format(bench_dir, bench))

    # do we do a comparison?
    if comp_bench:
        compare_file = "{}/{}".format(bench_dir, bench)
        msg.warning("comparing to {}".format(compare_file))
        bench_grid, bench_data = patch.read(compare_file)

        result = compare.compare(my_data.grid, my_data,
                                 bench_grid, bench_data)

        if result == 0:
            msg.success("results match benchmark\n")
        else:
            msg.warning("ERROR: {}\n".format(compare.errors[result]))

        return result


    # normal return -- error wrt true solution
    return enorm
Esempio n. 14
0
            basename = rp.get_param("io.basename")
            pylab.savefig(basename + "%4.4d" % (n) + ".png")

        pfd.end()

pf.end()


#-----------------------------------------------------------------------------
# benchmarks (for regression testing)
#-----------------------------------------------------------------------------
# are we comparing to a benchmark?
if comp_bench:
    compare_file = solverName + "/tests/" + basename + "%4.4d" % (n)
    msg.warning("comparing to: %s " % (compare_file) )
    bench_grid, bench_data = patch.read(compare_file)

    result = compare.compare(my_grid, my_data, bench_grid, bench_data)
    
    if result == 0:
        msg.success("results match benchmark\n")
    else:
        msg.fail("ERROR: " + compare.errors[result] + "\n")


# are we storing a benchmark?
if make_bench:
    bench_file = solverName + "/tests/" + basename + "%4.4d" % (n)
    msg.warning("storing new benchmark: %s\n " % (bench_file) )
    my_data.write(bench_file)
    
Esempio n. 15
0
def compare(time,res=512,base='/Users/cgkim/Dropbox/pyro/data/',fileout=False):
  if res == 512: 
    f1='vortex_e1_512%4.4d.pyro' % time
    f0='vortex_e0_512%4.4d.pyro' % time
  elif res == 256:
    f1='vortex_e1_256_%4.4d.pyro' % time
    f0='vortex_e0_256_%4.4d.pyro' % time
  elif res == 128:
    f1='vortex_e1_%4.4d.pyro' % time
    f0='vortex_e0_%4.4d.pyro' % time

  g1,d1 = patch.read(base+f1)
  g0,d0 = patch.read(base+f0)

  time=d1.t

  w1,gwx1,gwy1 = get_vorticity(g1,d1) 
  w0,gwx0,gwy0 = get_vorticity(g0,d0)

  dw=w1-w0
  dgwx=gwx1-gwx0
  dgwy=gwy1-gwy0
  dgw=np.sqrt(dgwx**2+dgwy**2)

  n1=g1.nx/4
  n2=g1.nx/4*3
#  print dgw.shape

  plt.clf()
  y2d=g1.y2d[g1.ilo:g1.ihi+1,g1.jlo:g1.jhi+1] 
  x2d=g1.x2d[g1.ilo:g1.ihi+1,g1.jlo:g1.jhi+1] 
  idx1=y2d < (-x2d+0.5+0.4*time)
  idx2=y2d > (-x2d+1.5-0.4*time)
  idx3=y2d > (+x2d+0.6*time)
  idx4=y2d < (+x2d-2.0-0.6*time)
  dgw[idx1]=0.
  dgw[idx2]=0.
  dgw[idx3]=0.
  dgw[idx4]=0.
  upper=y2d > -x2d
  lower=y2d < -x2d

#  x1,y1= x2d[upper][np.argmax(dgw[upper])],y2d[upper][np.argmax(dgw[upper])]
#  x2,y2= x2d[lower][np.argmax(dgw[lower])],y2d[lower][np.argmax(dgw[lower])]
#  print x1,y1,x2,y2
#  print np.sqrt((x1-x2)**2+(y1-y2)**2),g1.dx
  x1,y1= x2d.flatten()[np.argmax(dgw)],y2d.flatten()[np.argmax(dgw)]
  nres=np.sqrt((x1-1.0)**2+(y1-0.0)**2)/g1.dx

  im=plt.imshow(dgw.T,origin='lower',interpolation='nearest',
    extent=[g1.xmin,g1.xmax,g1.ymin,g1.ymax],
    norm=LogNorm(vmin=1.e-2,vmax=1.e2))
  plt.plot(g1.xr,-g1.xr+0.5+0.4*time,ls=':',color='w')
  plt.plot(g1.xr,-g1.xr+1.5-0.4*time,ls=':',color='w')
  plt.plot(g1.xr,+g1.xr+0.6*time,ls=':',color='w')
  plt.plot(g1.xr,+g1.xr-2.0-0.6*time,ls=':',color='w')
  plt.xlim(0,2)
  plt.ylim(-1,1)
  plt.colorbar(im)
  plt.scatter(x1,y1,marker='*')
  plt.axhline(0,ls=':')
  plt.axvline(1,ls=':')

  norm=np.sum(dgw**2*g1.dx*g1.dy)

  if fileout:
    if time == 0.0: 
      fp=open('norm_%d.txt' % res,'w')
    else:
      fp=open('norm_%d.txt' % res,'a')
    fp.write("%15.5e %15.5e %15.5e\n" % (time,norm,nres))
    fp.close() 
  print time,norm,nres
  return time,norm
Esempio n. 16
0
def process(file):

    # read the data and convert to the primitive variables (and velocity
    # magnitude)
    myg, myd = patch.read(file)

    phi_t = myd.get_var("phi")
    phi = phi_t[myg.ilo:myg.ihi+1,myg.jlo:myg.jhi+1]

    # get the problem parameters
    t_0     = myd.get_aux("t_0")
    phi_0   = myd.get_aux("phi_0")
    phi_max = myd.get_aux("phi_max")
    k       = myd.get_aux("k")

    t = myd.t

    # radially bin

    # see http://code.google.com/p/agpy/source/browse/trunk/agpy/radialprofile.py?r=317
    # for inspiration

    # first define the bins
    rmin = 0
    rmax = np.sqrt(myg.xmax**2 + myg.ymax**2)

    nbins = np.int(np.sqrt(myg.nx**2 + myg.ny**2))

    # bins holds the edges, so there is one more value than actual bin
    # bin_centers holds the center value of the bin
    bins = np.linspace(rmin, rmax, nbins+1)
    bin_centers = 0.5*(bins[1:] + bins[:-1])


    # radius of each zone
    xcenter = 0.5*(myg.xmin + myg.xmax)
    ycenter = 0.5*(myg.ymin + myg.ymax)

    r = np.sqrt( (myg.x2d[myg.ilo:myg.ihi+1,myg.jlo:myg.jhi+1] - xcenter)**2 +
                    (myg.y2d[myg.ilo:myg.ihi+1,myg.jlo:myg.jhi+1] - ycenter)**2 )


    # bin the radii -- digitize returns an array with the same shape
    # as the input array but with elements of the array specifying
    # which bin that location belongs to.  The value of whichbin will
    # be 1 if we are located in the bin defined by bins[0] to bins[1].
    # This means that there will be no 0s
    whichbin = np.digitize(r.flat, bins)

    # bincount counts the number of occurrences of each non-negative
    # integer value in whichbin.  Each entry in ncount gives the
    # number of occurrences of it in whichbin.  The length of ncount
    # is set by the maximum value in whichbin
    ncount = np.bincount(whichbin)


    # now bin the associated data
    phi_bin = np.zeros(len(ncount)-1, dtype=np.float64)

    for n in range(ncount):

        # remember that there are no whichbin == 0, since that
        # corresponds to the left edge.  So we want whichbin == 1 to
        # correspond to the first value of bin_centers
        # (bin_centers[0])
        phi_bin[n-1] = np.sum(phi.flat[whichbin==n])/np.sum(ncount[n])


    bin_centers = bin_centers[0:len(ncount)-1]

    # get the analytic solution
    phi_exact = gaussian.phi_analytic(bin_centers, t, t_0, k, phi_0, phi_max)

    return bin_centers, phi_exact, phi_bin
Esempio n. 17
0
def doit(solver_name,
         problem_name,
         param_file,
         other_commands=None,
         comp_bench=False,
         make_bench=False):

    msg.bold('pyro ...')

    tc = profile.TimerCollection()

    tm_main = tc.timer("main")
    tm_main.begin()

    # import desired solver under "solver" namespace
    solver = importlib.import_module(solver_name)

    #-------------------------------------------------------------------------
    # runtime parameters
    #-------------------------------------------------------------------------

    # parameter defaults
    rp = runparams.RuntimeParameters()
    rp.load_params("_defaults")
    rp.load_params(solver_name + "/_defaults")

    # problem-specific runtime parameters
    rp.load_params(solver_name + "/problems/_" + problem_name + ".defaults")

    # now read in the inputs file
    if not os.path.isfile(param_file):
        # check if the param file lives in the solver's problems directory
        param_file = solver_name + "/problems/" + param_file
        if not os.path.isfile(param_file):
            msg.fail("ERROR: inputs file does not exist")

    rp.load_params(param_file, no_new=1)

    # and any commandline overrides
    if not other_commands == None:
        rp.command_line_params(other_commands)

    # write out the inputs.auto
    rp.print_paramfile()

    #-------------------------------------------------------------------------
    # initialization
    #-------------------------------------------------------------------------

    # initialize the Simulation object -- this will hold the grid and
    # data and know about the runtime parameters and which problem we
    # are running
    sim = solver.Simulation(solver_name, problem_name, rp, timers=tc)

    sim.initialize()
    sim.preevolve()

    #-------------------------------------------------------------------------
    # evolve
    #-------------------------------------------------------------------------
    init_tstep_factor = rp.get_param("driver.init_tstep_factor")
    max_dt_change = rp.get_param("driver.max_dt_change")
    fix_dt = rp.get_param("driver.fix_dt")

    verbose = rp.get_param("driver.verbose")

    plt.ion()

    sim.cc_data.t = 0.0

    # output the 0th data
    basename = rp.get_param("io.basename")
    sim.cc_data.write("{}{:04d}".format(basename, sim.n))

    dovis = rp.get_param("vis.dovis")
    if dovis:
        plt.figure(num=1, figsize=(8, 6), dpi=100, facecolor='w')
        sim.dovis()

    while not sim.finished():

        # fill boundary conditions
        sim.cc_data.fill_BC_all()

        # get the timestep
        if fix_dt > 0.0:
            sim.dt = fix_dt
        else:
            sim.compute_timestep()
            if sim.n == 0:
                sim.dt = init_tstep_factor * sim.dt
            else:
                sim.dt = min(max_dt_change * dt_old, sim.dt)
            dt_old = sim.dt

        if sim.cc_data.t + sim.dt > sim.tmax:
            sim.dt = sim.tmax - sim.cc_data.t

        # evolve for a single timestep
        sim.evolve()

        if verbose > 0:
            print("%5d %10.5f %10.5f" % (sim.n, sim.cc_data.t, sim.dt))

        # output
        if sim.do_output():
            if verbose > 0: msg.warning("outputting...")
            basename = rp.get_param("io.basename")
            sim.cc_data.write("{}{:04d}".format(basename, sim.n))

        # visualization
        if dovis:
            tm_vis = tc.timer("vis")
            tm_vis.begin()

            sim.dovis()
            store = rp.get_param("vis.store_images")

            if store == 1:
                basename = rp.get_param("io.basename")
                plt.savefig("{}{:04d}.png".format(basename, sim.n))

            tm_vis.end()

    tm_main.end()

    #-------------------------------------------------------------------------
    # benchmarks (for regression testing)
    #-------------------------------------------------------------------------
    # are we comparing to a benchmark?
    if comp_bench:
        compare_file = solver_name + "/tests/" + basename + "%4.4d" % (sim.n)
        msg.warning("comparing to: %s " % (compare_file))
        try:
            bench_grid, bench_data = patch.read(compare_file)
        except:
            msg.warning("ERROR openning compare file")
            return "ERROR openning compare file"

        result = compare.compare(sim.cc_data.grid, sim.cc_data, bench_grid,
                                 bench_data)

        if result == 0:
            msg.success("results match benchmark\n")
        else:
            msg.warning("ERROR: " + compare.errors[result] + "\n")

    # are we storing a benchmark?
    if make_bench:
        if not os.path.isdir(solver_name + "/tests/"):
            try:
                os.mkdir(solver_name + "/tests/")
            except:
                msg.fail(
                    "ERROR: unable to create the solver's tests/ directory")

        bench_file = solver_name + "/tests/" + basename + "%4.4d" % (sim.n)
        msg.warning("storing new benchmark: {}\n".format(bench_file))
        sim.cc_data.write(bench_file)

    #-------------------------------------------------------------------------
    # final reports
    #-------------------------------------------------------------------------
    if verbose > 0: rp.print_unused_params()
    if verbose > 0: tc.report()

    sim.finalize()

    if comp_bench:
        return result
    else:
        return None
Esempio n. 18
0
    print usage
    sys.exit()


if __name__ == "__main__":

    try:
        opts, next = getopt.getopt(sys.argv[1:], "o:h:")
    except getopt.GetoptError:
        sys.exit("invalid calling sequence")

    outfile = "plot.png"

    for o, a in opts:
        if o == "-h": usage()
        if o == "-o": outfile = a

    try:
        var = next[0]
    except:
        usage()

    try:
        file = next[1]
    except:
        usage()

    myg, myd = patch.read(file)

    makeplot(myd, var, outfile)
Esempio n. 19
0
def init_data(my_data, rp):
    """ initialize the isothermal atmosphere problem """

    msg.bold("initializing the isothermal atmosphere problem...")

    # make sure that we are passed a valid patch object
    if not isinstance(my_data, patch.CellCenterData2d):
        print("ERROR: patch invalid in isothermal.py")
        print(my_data.__class__)
        sys.exit()

    # get the density, momenta, and energy as separate variables
    dens = my_data.get_var("density")
    xmom = my_data.get_var("x-momentum")
    ymom = my_data.get_var("y-momentum")
    ener = my_data.get_var("energy")

    gamma = rp.get_param("eos.gamma")

    grav_const = rp.get_param("compressible.grav")
    cs = rp.get_param("isothermal.cs")

    eddington_ratio = rp.get_param("isothermal.eddington")

    dens1 = rp.get_param("isothermal.dens1")

    amp = rp.get_param("isothermal.amp")
    nwaves = rp.get_param("isothermal.nwaves")

    xmax = rp.get_param("mesh.xmax")
    ymax = rp.get_param("mesh.ymax")

    if grav_const != 0.0:
        scale_height = cs*cs/numpy.abs(grav_const)
    else:
        scale_height = 0.1

    print("scale height:",scale_height)

    smallpres = 1.e-10
    smalldens = smallpres/(cs**2)

    # compute optical depth
    kappa = 1.0
    c = 1.0
    column_density = dens1*scale_height*(1.0-numpy.exp(-ymax))
    optical_depth = column_density*kappa
    I_0 = (1./numpy.pi)*eddington_ratio*c*numpy.abs(grav_const) \
        *column_density/(1.0-numpy.exp(-optical_depth))
    my_data.set_aux("surface_brightness", I_0)
    my_data.set_aux("speed_of_light", c)
    my_data.set_aux("opacity",kappa)
    print("optical depth:",optical_depth)
    print("surface brightness:",I_0)

    # compute Eddington ratio
    rad_accel = (numpy.pi*I_0)*kappa/c* \
        (1.0-numpy.exp(-optical_depth))/optical_depth \
        # mass weighted flux (plane-parallel radiation, constant kappa)
    net_accel = rad_accel + grav_const
    eddington_ratio = rad_accel/numpy.abs(grav_const)
    print("eddington_ratio:",eddington_ratio)
    print("net accel:",net_accel)

    # initialize the components, remember, that ener here is
    # rho*eint + 0.5*rho*v**2, where eint is the specific
    # internal energy (erg/g)
    xmom.d[:,:] = 0.0
    ymom.d[:,:] = 0.0
    dens.d[:,:] = 0.0

    if rp.get_param('restart.flag') != 0:
        # reload simulation state from file
        grid,cells = patch.read(rp.get_param('restart.snapshot'))
        dens.d[:,:] = cells.get_var('density').d
        xmom.d[:,:] = cells.get_var('x-momentum').d
        ymom.d[:,:] = cells.get_var('y-momentum').d
        ener.d[:,:] = cells.get_var('energy').d
        
        ## must set time!!
        my_data.t = cells.t
    else:
        # set the density to be stratified in the y-direction
        myg = my_data.grid

        p = myg.scratch_array()

        dens.d[:,:] = dens1*numpy.exp(-myg.y2d/scale_height)
        dens.d[dens.d < smalldens] = smalldens
        p.d[:,:] = dens.d * cs**2 / gamma

        # set the velocity perturbations
        u = 0.

        A = amp*numpy.random.rand(dens.d.shape[0],dens.d.shape[1])
        #    v = A*(1+numpy.cos(nwaves*numpy.pi*myg.x2d/xmax))*0.5
        v = A*(numpy.cos(nwaves*numpy.pi*myg.x2d/xmax))*0.5

        # set the momenta
        xmom.d[:,:] = dens.d * u
        ymom.d[:,:] = dens.d * v

        # set the energy (P = cs2*dens/gamma)
        ener.d[:,:] = p.d[:,:]/(gamma - 1.0) + \
            0.5*(xmom.d[:,:]**2 + ymom.d[:,:]**2)/dens.d[:,:]