Esempio n. 1
0
def _filter_genes(
    *,
    cells_count: int,
    genes_count: int,
    fold_factors: ut.CompressedMatrix,
    min_gene_fold_factor: float,
    max_gene_fraction: Optional[float] = None,
) -> ut.NumpyVector:
    ut.timed_parameters(cells=cells_count, genes=genes_count, fold_factors=fold_factors.nnz)
    max_fold_factors_of_genes = ut.max_per(fold_factors, per="column")
    assert max_fold_factors_of_genes.size == genes_count

    mask_of_deviant_genes = max_fold_factors_of_genes >= min_gene_fold_factor
    deviant_gene_fraction = np.sum(mask_of_deviant_genes) / genes_count

    if max_gene_fraction is not None and deviant_gene_fraction > max_gene_fraction:
        if ut.logging_calc():
            ut.log_calc("candidate_deviant_genes", mask_of_deviant_genes)

        quantile_gene_fold_factor = np.quantile(max_fold_factors_of_genes, 1 - max_gene_fraction)
        assert quantile_gene_fold_factor is not None
        ut.log_calc("quantile_gene_fold_factor", quantile_gene_fold_factor)

        if quantile_gene_fold_factor > min_gene_fold_factor:
            min_gene_fold_factor = quantile_gene_fold_factor
            mask_of_deviant_genes = max_fold_factors_of_genes >= min_gene_fold_factor

            fold_factors.data[fold_factors.data < min_gene_fold_factor] = 0
            ut.eliminate_zeros(fold_factors)

    if ut.logging_calc():
        ut.log_calc("deviant_genes", mask_of_deviant_genes)

    deviant_gene_indices = np.where(mask_of_deviant_genes)[0]
    return deviant_gene_indices
Esempio n. 2
0
 def store_matrix(matrix: ut.CompressedMatrix, name: str,
                  when: bool) -> None:  #
     if when:
         name = elements + "_" + name
         set_data(
             adata,
             name,
             matrix,
             formatter=lambda matrix: ut.ratio_description(
                 matrix.shape[0] * matrix.shape[1], "element", matrix.nnz,
                 "nonzero"),
         )
     elif ut.logging_calc():
         ut.log_calc(
             f"{elements}_{name}",
             ut.ratio_description(matrix.shape[0] * matrix.shape[1],
                                  "element", matrix.nnz, "nonzero"),
         )
Esempio n. 3
0
def _filter_cells(
    *,
    cells_count: int,
    genes_count: int,
    deviant_genes_fold_ranks: ut.NumpyMatrix,
    deviant_gene_indices: ut.NumpyVector,
    max_cell_fraction: Optional[float],
) -> Tuple[ut.NumpyVector, ut.NumpyVector]:
    min_fold_ranks_of_cells = np.min(deviant_genes_fold_ranks, axis=1)
    assert min_fold_ranks_of_cells.size == cells_count

    threshold_cells_fold_rank = cells_count

    mask_of_deviant_cells = min_fold_ranks_of_cells < threshold_cells_fold_rank
    deviants_cells_count = sum(mask_of_deviant_cells)
    deviant_cell_fraction = deviants_cells_count / cells_count

    if ut.logging_calc():
        ut.log_calc("deviant_cells", mask_of_deviant_cells)

    if max_cell_fraction is not None and deviant_cell_fraction > max_cell_fraction:

        quantile_cells_fold_rank = np.quantile(min_fold_ranks_of_cells, max_cell_fraction)
        assert quantile_cells_fold_rank is not None

        ut.log_calc("quantile_cells_fold_rank", quantile_cells_fold_rank)

        if quantile_cells_fold_rank < threshold_cells_fold_rank:
            threshold_cells_fold_rank = quantile_cells_fold_rank

    ut.log_calc("threshold_cells_fold_rank", threshold_cells_fold_rank)
    deviant_votes = deviant_genes_fold_ranks < threshold_cells_fold_rank

    votes_of_deviant_cells = ut.sum_per(ut.to_layout(deviant_votes, "row_major"), per="row")
    assert votes_of_deviant_cells.size == cells_count

    votes_of_deviant_genes = ut.sum_per(deviant_votes, per="column")
    assert votes_of_deviant_genes.size == deviant_gene_indices.size

    votes_of_all_genes = np.zeros(genes_count, dtype="int32")
    votes_of_all_genes[deviant_gene_indices] = votes_of_deviant_genes

    return votes_of_deviant_cells, votes_of_all_genes
Esempio n. 4
0
def find_noisy_lonely_genes(  # pylint: disable=too-many-statements
    adata: AnnData,
    what: Union[str, ut.Matrix] = "__x__",
    *,
    excluded_genes_mask: Optional[str] = None,
    max_sampled_cells: int = pr.noisy_lonely_max_sampled_cells,
    downsample_min_samples: int = pr.noisy_lonely_downsample_min_samples,
    downsample_min_cell_quantile: float = pr.
    noisy_lonely_downsample_max_cell_quantile,
    downsample_max_cell_quantile: float = pr.
    noisy_lonely_downsample_min_cell_quantile,
    min_gene_total: int = pr.noisy_lonely_min_gene_total,
    min_gene_normalized_variance: float = pr.
    noisy_lonely_min_gene_normalized_variance,
    max_gene_similarity: float = pr.noisy_lonely_max_gene_similarity,
    random_seed: int = pr.random_seed,
    inplace: bool = True,
) -> Optional[ut.PandasSeries]:
    """
    Detect "noisy lonely" genes based on ``what`` (default: {what}) data.

    Return the indices of genes which are "noisy" (have high variance compared to their mean) and
    also "lonely" (have low correlation with all other genes). Such genes should be excluded since
    they will never meaningfully help us compute groups, and will actively cause profiles to be
    considered "deviants".

    Noisy genes have high expression and variance. Lonely genes have no (or low) correlations with
    any other gene. Noisy lonely genes tend to throw off clustering algorithms. In general, such
    algorithms try to group together cells with the same overall biological state. Since the genes
    are lonely, they don't contribute towards this goal. Since they are noisy, they actively hamper
    this, because they make cells which are otherwise similar appear different (just for this lonely
    gene).

    It is therefore useful to explicitly identify, in a pre-processing step, the (few) such genes,
    and exclude them from the rest of the analysis.

    **Input**

    Annotated ``adata``, where the observations are cells and the variables are genes, where
    ``what`` is a per-variable-per-observation matrix or the name of a per-variable-per-observation
    annotation containing such a matrix.

    **Returns**

    Variable (Gene) Annotations
        ``noisy_lonely_genes``
            A boolean mask indicating whether each gene was found to be a "noisy lonely" gene.

    If ``inplace`` (default: {inplace}), this is written to the data, and the function returns
    ``None``. Otherwise this is returned as a pandas series (indexed by the variable names).

    **Computation Parameters**

    1. If we have more than ``max_sampled_cells`` (default: {max_sampled_cells}), pick this number
       of random cells from the data using the ``random_seed``.

    2. If we were specified an ``excluded_genes_mask``, this is the name of a per-variable (gene)
       annotation containing a mask of excluded genes. Get rid of all these excluded genes.

    3. Invoke :py:func:`metacells.tools.downsample.downsample_cells` to downsample the cells to the
       same total number of UMIs, using the ``downsample_min_samples`` (default:
       {downsample_min_samples}), ``downsample_min_cell_quantile`` (default:
       {downsample_min_cell_quantile}), ``downsample_max_cell_quantile`` (default:
       {downsample_max_cell_quantile}) and the ``random_seed`` (default: {random_seed}).

    4. Find "noisy" genes which have a total number of UMIs of at least ``min_gene_total`` (default:
       {min_gene_total}) and a normalized variance of at least ``min_gene_normalized_variance``
       (default: ``min_gene_normalized_variance``).

    5. Cross-correlate the noisy genes.

    6. Find the noisy "lonely" genes whose maximal correlation is at most
       ``max_gene_similarity`` (default: {max_gene_similarity}) with all other genes.
    """
    if max_sampled_cells < adata.n_obs:
        np.random.seed(random_seed)
        cell_indices = np.random.choice(np.arange(adata.n_obs),
                                        size=max_sampled_cells,
                                        replace=False)
        s_data = ut.slice(adata,
                          obs=cell_indices,
                          name=".sampled",
                          top_level=False)
    else:
        s_data = ut.copy_adata(adata, top_level=False)

    track_var: Optional[str] = "sampled_gene_index"

    if excluded_genes_mask is not None:
        results = filter_data(s_data,
                              name="included",
                              top_level=False,
                              track_var=track_var,
                              var_masks=[f"~{excluded_genes_mask}"])
        track_var = None
        assert results is not None
        i_data = results[0]
        assert i_data is not None
    else:
        i_data = s_data

    downsample_cells(
        i_data,
        what,
        downsample_min_samples=downsample_min_samples,
        downsample_min_cell_quantile=downsample_min_cell_quantile,
        downsample_max_cell_quantile=downsample_max_cell_quantile,
        random_seed=random_seed,
    )

    find_high_total_genes(i_data, "downsampled", min_gene_total=min_gene_total)

    results = filter_data(i_data,
                          name="high_total",
                          top_level=False,
                          track_var=track_var,
                          var_masks=["high_total_gene"])
    track_var = None
    assert results is not None
    ht_data = results[0]

    noisy_lonely_genes_mask = np.full(adata.n_vars, False)

    if ht_data is not None:
        ht_genes_count = ht_data.shape[1]

        ht_gene_ht_gene_similarity_frame = compute_var_var_similarity(
            ht_data,
            "downsampled",
            inplace=False,
            reproducible=(random_seed != 0))
        assert ht_gene_ht_gene_similarity_frame is not None

        ht_gene_ht_gene_similarity_matrix = ut.to_numpy_matrix(
            ht_gene_ht_gene_similarity_frame, only_extract=True)
        ht_gene_ht_gene_similarity_matrix = ut.to_layout(
            ht_gene_ht_gene_similarity_matrix,
            layout="row_major",
            symmetric=True)
        np.fill_diagonal(ht_gene_ht_gene_similarity_matrix, -1)

        htv_mask_series = find_high_normalized_variance_genes(
            ht_data,
            "downsampled",
            min_gene_normalized_variance=min_gene_normalized_variance,
            inplace=False)
        assert htv_mask_series is not None
        htv_mask = ut.to_numpy_vector(htv_mask_series)

        htv_genes_count = np.sum(htv_mask)
        assert htv_genes_count <= ht_genes_count

        if htv_genes_count > 0:
            htv_gene_ht_gene_similarity_matrix = ht_gene_ht_gene_similarity_matrix[
                htv_mask, :]
            assert ut.is_layout(htv_gene_ht_gene_similarity_matrix,
                                "row_major")
            assert htv_gene_ht_gene_similarity_matrix.shape == (
                htv_genes_count, ht_genes_count)

            max_similarity_of_htv_genes = ut.max_per(
                htv_gene_ht_gene_similarity_matrix, per="row")
            htvl_mask = max_similarity_of_htv_genes <= max_gene_similarity
            htvl_genes_count = np.sum(htvl_mask)
            ut.log_calc("noisy_lonely_genes_count", htvl_genes_count)

            if htvl_genes_count > 0:
                base_index_of_ht_genes = ut.get_v_numpy(
                    ht_data, "sampled_gene_index")
                base_index_of_htv_genes = base_index_of_ht_genes[htv_mask]
                base_index_of_htvl_genes = base_index_of_htv_genes[htvl_mask]

                noisy_lonely_genes_mask[base_index_of_htvl_genes] = True

                htvl_gene_ht_gene_similarity_matrix = htv_gene_ht_gene_similarity_matrix[
                    htvl_mask, :]
                htvl_gene_ht_gene_similarity_matrix = ut.to_layout(
                    htvl_gene_ht_gene_similarity_matrix, layout="row_major")
                assert htvl_gene_ht_gene_similarity_matrix.shape == (
                    htvl_genes_count, ht_genes_count)

                if ut.logging_calc():
                    i_gene_totals = ut.get_v_numpy(i_data,
                                                   "downsampled",
                                                   sum=True)
                    ht_mask = ut.get_v_numpy(i_data, "high_total_gene")
                    i_total = np.sum(i_gene_totals)
                    htvl_gene_totals = i_gene_totals[ht_mask][htv_mask][
                        htvl_mask]
                    top_similarity_of_htvl_genes = ut.top_per(
                        htvl_gene_ht_gene_similarity_matrix, 10, per="row")
                    for htvl_index, gene_index in enumerate(
                            base_index_of_htvl_genes):
                        gene_name = adata.var_names[gene_index]
                        gene_total = htvl_gene_totals[htvl_index]
                        gene_percent = 100 * gene_total / i_total
                        similar_ht_values = ut.to_numpy_vector(
                            top_similarity_of_htvl_genes[htvl_index, :])  #
                        assert len(similar_ht_values) == ht_genes_count
                        top_similar_ht_mask = similar_ht_values > 0
                        top_similar_ht_values = similar_ht_values[
                            top_similar_ht_mask]
                        top_similar_ht_indices = base_index_of_ht_genes[
                            top_similar_ht_mask]
                        top_similar_ht_names = adata.var_names[
                            top_similar_ht_indices]
                        ut.log_calc(
                            f"- {gene_name}",
                            f"total downsampled UMIs: {gene_total} " +
                            f"({gene_percent:.4g}%), correlated with: " +
                            ", ".join([
                                f"{similar_gene_name}: {similar_gene_value:.4g}"
                                for similar_gene_value, similar_gene_name in
                                reversed(
                                    sorted(
                                        zip(top_similar_ht_values,
                                            top_similar_ht_names)))
                            ]),
                        )

    if ut.logging_calc():
        ut.log_calc("noisy_lonely_gene_names",
                    sorted(list(adata.var_names[noisy_lonely_genes_mask])))

    if inplace:
        ut.set_v_data(adata, "noisy_lonely_gene", noisy_lonely_genes_mask)
        return None

    ut.log_return("noisy_lonely_genes", noisy_lonely_genes_mask)
    return ut.to_pandas_series(noisy_lonely_genes_mask, index=adata.var_names)
Esempio n. 5
0
def _keep_candidate(  # pylint: disable=too-many-branches
    adata: AnnData,
    candidate_index: int,
    *,
    data: ut.ProperMatrix,
    cell_sizes: Optional[ut.NumpyVector],
    fraction_of_genes: ut.NumpyVector,
    min_metacell_cells: int,
    min_robust_size: Optional[float],
    min_convincing_size: Optional[float],
    min_convincing_gene_fold_factor: float,
    abs_folds: bool,
    candidates_count: int,
    candidate_cell_indices: ut.NumpyVector,
) -> bool:
    genes_count = data.shape[1]

    if cell_sizes is None:
        candidate_total_size = candidate_cell_indices.size
    else:
        candidate_total_size = np.sum(cell_sizes[candidate_cell_indices])

    if candidate_cell_indices.size < min_metacell_cells:
        if ut.logging_calc():
            ut.log_calc(
                f'- candidate: {ut.progress_description(candidates_count, candidate_index, "candidate")} '
                f"cells: {candidate_cell_indices.size} "
                f"size: {candidate_total_size:g} "
                f"is: little")
        return False

    if min_robust_size is not None and candidate_total_size >= min_robust_size:
        if ut.logging_calc():
            ut.log_calc(
                f'- candidate: {ut.progress_description(candidates_count, candidate_index, "candidate")} '
                f"cells: {candidate_cell_indices.size} "
                f"size: {candidate_total_size:g} "
                f"is: robust")
        return True

    if min_convincing_size is None:
        if ut.logging_calc():
            ut.log_calc(
                f'- candidate: {ut.progress_description(candidates_count, candidate_index, "candidate")} '
                f"cells: {candidate_cell_indices.size} "
                f"size: {candidate_total_size:g} "
                f"is: accepted")
        return True

    if candidate_total_size < min_convincing_size:
        if ut.logging_calc():
            ut.log_calc(
                f'- candidate: {ut.progress_description(candidates_count, candidate_index, "candidate")} '
                f"cells: {candidate_cell_indices.size} "
                f"size: {candidate_total_size:g} "
                f"is: unconvincing")
        return False

    candidate_data = data[candidate_cell_indices, :]
    candidate_data_of_genes = ut.to_numpy_vector(candidate_data.sum(axis=0))
    assert candidate_data_of_genes.size == genes_count
    candidate_total = np.sum(candidate_data_of_genes)
    candidate_expected_of_genes = fraction_of_genes * candidate_total
    candidate_expected_of_genes += 1
    candidate_data_of_genes += 1
    candidate_data_of_genes /= candidate_expected_of_genes
    np.log2(candidate_data_of_genes, out=candidate_data_of_genes)
    if abs_folds:
        convincing_genes_mask = np.abs(
            candidate_data_of_genes) >= min_convincing_gene_fold_factor
    else:
        convincing_genes_mask = candidate_data_of_genes >= min_convincing_gene_fold_factor
    keep_candidate = bool(np.any(convincing_genes_mask))

    if ut.logging_calc():
        convincing_gene_indices = np.where(convincing_genes_mask)[0]
        if keep_candidate:
            ut.log_calc(
                f'- candidate: {ut.progress_description(candidates_count, candidate_index, "candidate")} '
                f"cells: {candidate_cell_indices.size} "
                f"size: {candidate_total_size:g} "
                f"is: convincing because:")
            for fold_factor, name in reversed(
                    sorted(
                        zip(candidate_data_of_genes[convincing_gene_indices],
                            adata.var_names[convincing_gene_indices]))):
                ut.log_calc(f"    {name}: {ut.fold_description(fold_factor)}")
        else:
            ut.log_calc(
                f'- candidate: {ut.progress_description(candidates_count, candidate_index, "candidate")} '
                f"cells: {candidate_cell_indices.size} "
                f"size: {candidate_total_size:g} "
                f"is: not convincing")

    return keep_candidate
Esempio n. 6
0
def _compress_modules(
    *,
    adata_of_all_genes_of_all_cells: AnnData,
    what: Union[str, ut.Matrix] = "__x__",
    min_cells_of_modules: int,
    max_cells_of_modules: int,
    target_metacell_size: float,
    min_modules_size_factor: float,
    related_gene_indices_of_modules: List[List[int]],
    rare_module_of_cells: ut.NumpyVector,
) -> List[List[int]]:
    list_of_rare_gene_indices_of_modules: List[List[int]] = []
    list_of_names_of_genes_of_modules: List[List[str]] = []

    min_umis_of_modules = target_metacell_size * min_modules_size_factor
    ut.log_calc("min_umis_of_modules", min_umis_of_modules)

    total_all_genes_of_all_cells = ut.get_o_numpy(
        adata_of_all_genes_of_all_cells, what, sum=True)

    cell_counts_of_modules: List[int] = []

    ut.log_calc("compress modules:")
    modules_count = len(related_gene_indices_of_modules)
    for module_index, gene_indices_of_module in enumerate(
            related_gene_indices_of_modules):
        if len(gene_indices_of_module) == 0:
            continue

        with ut.log_step(
                "- module",
                module_index,
                formatter=lambda module_index: ut.progress_description(
                    modules_count, module_index, "module"),
        ):
            module_cells_mask = rare_module_of_cells == module_index
            module_cells_count = np.sum(module_cells_mask)
            module_umis_count = np.sum(
                total_all_genes_of_all_cells[module_cells_mask])

            if module_cells_count < min_cells_of_modules:
                if ut.logging_calc():
                    ut.log_calc("cells",
                                str(module_cells_count) + " (too few)")
                rare_module_of_cells[module_cells_mask] = -1
                continue

            if module_cells_count > max_cells_of_modules:
                if ut.logging_calc():
                    ut.log_calc("cells",
                                str(module_cells_count) + " (too many)")
                rare_module_of_cells[module_cells_mask] = -1
                continue

            ut.log_calc("cells", module_cells_count)

            if module_umis_count < min_umis_of_modules:
                if ut.logging_calc():
                    ut.log_calc("UMIs", str(module_umis_count) + " (too few)")
                rare_module_of_cells[module_cells_mask] = -1
                continue

            ut.log_calc("UMIs", module_umis_count)

            next_module_index = len(list_of_rare_gene_indices_of_modules)
            if module_index != next_module_index:
                ut.log_calc("is reindexed to", next_module_index)
                rare_module_of_cells[module_cells_mask] = next_module_index
                module_index = next_module_index

            next_module_index += 1
            list_of_rare_gene_indices_of_modules.append(gene_indices_of_module)

            if ut.logging_calc():
                cell_counts_of_modules.append(np.sum(module_cells_mask))
            list_of_names_of_genes_of_modules.append(  #
                sorted(adata_of_all_genes_of_all_cells.
                       var_names[gene_indices_of_module]))

    if ut.logging_calc():
        ut.log_calc("final modules:")
        for module_index, (module_cells_count, module_gene_names) in enumerate(
                zip(cell_counts_of_modules,
                    list_of_names_of_genes_of_modules)):
            ut.log_calc(
                f"- module: {module_index} cells: {module_cells_count} genes: {module_gene_names}"
            )  #

    return list_of_rare_gene_indices_of_modules
Esempio n. 7
0
def _identify_cells(
    *,
    adata_of_all_genes_of_all_cells: AnnData,
    what: Union[str, ut.Matrix] = "__x__",
    related_gene_indices_of_modules: List[List[int]],
    min_cell_module_total: int,
    min_cells_of_modules: int,
    max_cells_of_modules: int,
    rare_module_of_cells: ut.NumpyVector,
) -> None:
    max_strength_of_cells = np.zeros(adata_of_all_genes_of_all_cells.n_obs)

    ut.log_calc("cells for modules:")
    modules_count = len(related_gene_indices_of_modules)
    for module_index, related_gene_indices_of_module in enumerate(
            related_gene_indices_of_modules):
        if len(related_gene_indices_of_module) == 0:
            continue

        with ut.log_step(
                "- module",
                module_index,
                formatter=lambda module_index: ut.progress_description(
                    modules_count, module_index, "module"),
        ):
            adata_of_related_genes_of_all_cells = ut.slice(
                adata_of_all_genes_of_all_cells,
                name=f".module{module_index}.related_genes",
                vars=related_gene_indices_of_module,
                top_level=False,
            )
            total_related_genes_of_all_cells = ut.get_o_numpy(
                adata_of_related_genes_of_all_cells, what, sum=True)

            mask_of_strong_cells_of_module = total_related_genes_of_all_cells >= min_cell_module_total

            median_strength_of_module = np.median(
                total_related_genes_of_all_cells[
                    mask_of_strong_cells_of_module])  #
            strong_cells_count = np.sum(mask_of_strong_cells_of_module)

            if strong_cells_count > max_cells_of_modules:
                if ut.logging_calc():
                    ut.log_calc(
                        "strong_cells",
                        ut.mask_description(mask_of_strong_cells_of_module) +
                        " (too many)")  #
                related_gene_indices_of_module.clear()
                continue

            if strong_cells_count < min_cells_of_modules:
                if ut.logging_calc():
                    ut.log_calc(
                        "strong_cells",
                        ut.mask_description(mask_of_strong_cells_of_module) +
                        " (too few)")  #
                related_gene_indices_of_module.clear()
                continue

            ut.log_calc("strong_cells", mask_of_strong_cells_of_module)

            strength_of_all_cells = total_related_genes_of_all_cells / median_strength_of_module
            mask_of_strong_cells_of_module &= strength_of_all_cells >= max_strength_of_cells
            max_strength_of_cells[
                mask_of_strong_cells_of_module] = strength_of_all_cells[
                    mask_of_strong_cells_of_module]

            rare_module_of_cells[mask_of_strong_cells_of_module] = module_index
Esempio n. 8
0
def _related_genes(  # pylint: disable=too-many-statements,too-many-branches
    *,
    adata_of_all_genes_of_all_cells: AnnData,
    what: Union[str, ut.Matrix] = "__x__",
    rare_gene_indices_of_modules: List[List[int]],
    allowed_genes_mask: ut.NumpyVector,
    min_genes_of_modules: int,
    min_gene_maximum: int,
    min_cells_of_modules: int,
    max_cells_of_modules: int,
    min_cell_module_total: int,
    min_related_gene_fold_factor: float,
    max_related_gene_increase_factor: float,
) -> List[List[int]]:
    total_all_cells_umis_of_all_genes = ut.get_v_numpy(
        adata_of_all_genes_of_all_cells, what, sum=True)

    ut.log_calc("genes for modules:")
    modules_count = 0
    related_gene_indices_of_modules: List[List[int]] = []

    rare_gene_indices_of_any: Set[int] = set()
    for rare_gene_indices_of_module in rare_gene_indices_of_modules:
        if len(rare_gene_indices_of_module) >= min_genes_of_modules:
            rare_gene_indices_of_any.update(list(rare_gene_indices_of_module))

    for rare_gene_indices_of_module in rare_gene_indices_of_modules:
        if len(rare_gene_indices_of_module) < min_genes_of_modules:
            continue

        module_index = modules_count
        modules_count += 1

        with ut.log_step("- module", module_index):
            ut.log_calc(
                "rare_gene_names",
                sorted(adata_of_all_genes_of_all_cells.
                       var_names[rare_gene_indices_of_module]))

            adata_of_module_genes_of_all_cells = ut.slice(
                adata_of_all_genes_of_all_cells,
                name=f".module{module_index}.rare_gene",
                vars=rare_gene_indices_of_module,
                top_level=False,
            )

            total_module_genes_umis_of_all_cells = ut.get_o_numpy(
                adata_of_module_genes_of_all_cells, what, sum=True)

            mask_of_expressed_cells = total_module_genes_umis_of_all_cells > 0

            expressed_cells_count = np.sum(mask_of_expressed_cells)

            if expressed_cells_count > max_cells_of_modules:
                if ut.logging_calc():
                    ut.log_calc(
                        "expressed_cells",
                        ut.mask_description(mask_of_expressed_cells) +
                        " (too many)")
                continue

            if expressed_cells_count < min_cells_of_modules:
                if ut.logging_calc():
                    ut.log_calc(
                        "expressed_cells",
                        ut.mask_description(mask_of_expressed_cells) +
                        " (too few)")
                continue

            ut.log_calc("expressed_cells", mask_of_expressed_cells)

            adata_of_all_genes_of_expressed_cells_of_module = ut.slice(
                adata_of_all_genes_of_all_cells,
                name=f".module{module_index}.rare_cell",
                obs=mask_of_expressed_cells,
                top_level=False,
            )

            total_expressed_cells_umis_of_all_genes = ut.get_v_numpy(
                adata_of_all_genes_of_expressed_cells_of_module,
                what,
                sum=True)

            data = ut.get_vo_proper(
                adata_of_all_genes_of_expressed_cells_of_module,
                what,
                layout="column_major")
            max_expressed_cells_umis_of_all_genes = ut.max_per(data,
                                                               per="column")

            total_background_cells_umis_of_all_genes = (
                total_all_cells_umis_of_all_genes -
                total_expressed_cells_umis_of_all_genes)

            expressed_cells_fraction_of_all_genes = total_expressed_cells_umis_of_all_genes / sum(
                total_expressed_cells_umis_of_all_genes)

            background_cells_fraction_of_all_genes = total_background_cells_umis_of_all_genes / sum(
                total_background_cells_umis_of_all_genes)

            mask_of_related_genes = (
                allowed_genes_mask
                & (max_expressed_cells_umis_of_all_genes >= min_gene_maximum)
                & (expressed_cells_fraction_of_all_genes >=
                   background_cells_fraction_of_all_genes *
                   (2**min_related_gene_fold_factor)))

            related_gene_indices = np.where(mask_of_related_genes)[0]
            assert np.all(mask_of_related_genes[rare_gene_indices_of_module])

            base_genes_of_all_cells_adata = ut.slice(
                adata_of_all_genes_of_all_cells,
                name=f".module{module_index}.base",
                vars=rare_gene_indices_of_module)
            total_base_genes_of_all_cells = ut.get_o_numpy(
                base_genes_of_all_cells_adata, what, sum=True)
            mask_of_strong_base_cells = total_base_genes_of_all_cells >= min_cell_module_total
            count_of_strong_base_cells = np.sum(mask_of_strong_base_cells)

            if ut.logging_calc():
                ut.log_calc(
                    "candidate_gene_names",
                    sorted(adata_of_all_genes_of_all_cells.
                           var_names[related_gene_indices]))
                ut.log_calc("base_strong_genes", count_of_strong_base_cells)

            related_gene_indices_of_module = list(rare_gene_indices_of_module)
            for gene_index in related_gene_indices:
                if gene_index in rare_gene_indices_of_module:
                    continue

                if gene_index in rare_gene_indices_of_any:
                    ut.log_calc(
                        f"- candidate gene {adata_of_all_genes_of_all_cells.var_names[gene_index]} "
                        f"belongs to another module")
                    continue

                if gene_index not in rare_gene_indices_of_module:
                    related_gene_of_all_cells_adata = ut.slice(
                        adata_of_all_genes_of_all_cells,
                        name=
                        f".{adata_of_all_genes_of_all_cells.var_names[gene_index]}",
                        vars=np.array([gene_index]),
                    )
                    assert related_gene_of_all_cells_adata.n_vars == 1
                    total_related_genes_of_all_cells = ut.get_o_numpy(
                        related_gene_of_all_cells_adata, what, sum=True)
                    total_related_genes_of_all_cells += total_base_genes_of_all_cells
                    mask_of_strong_related_cells = total_related_genes_of_all_cells >= min_cell_module_total
                    count_of_strong_related_cells = np.sum(
                        mask_of_strong_related_cells)
                    ut.log_calc(
                        f"- candidate gene {adata_of_all_genes_of_all_cells.var_names[gene_index]} "
                        f"strong cells: {count_of_strong_related_cells} "
                        f"factor: {count_of_strong_related_cells / count_of_strong_base_cells}"
                    )
                    if count_of_strong_related_cells > max_related_gene_increase_factor * count_of_strong_base_cells:
                        continue

                related_gene_indices_of_module.append(gene_index)

            related_gene_indices_of_modules.append(
                related_gene_indices_of_module)  #

    if ut.logging_calc():
        ut.log_calc("related genes for modules:")
        for module_index, related_gene_indices_of_module in enumerate(
                related_gene_indices_of_modules):
            ut.log_calc(
                f"- module {module_index} related_gene_names",
                sorted(adata_of_all_genes_of_all_cells.
                       var_names[related_gene_indices_of_module]),
            )

    return related_gene_indices_of_modules
Esempio n. 9
0
def combine_masks(  # pylint: disable=too-many-branches,too-many-statements
    adata: AnnData,
    masks: List[str],
    *,
    invert: bool = False,
    to: Optional[str] = None,
) -> Optional[ut.PandasSeries]:
    """
    Combine different pre-computed masks into a final overall mask.

    **Input**

    Annotated ``adata``, where the observations are cells and the variables are genes.

    **Returns**

    If ``to`` (default: {to}) is ``None``, returns the computed mask. Otherwise, sets the
    mask as an annotation (per-variable or per-observation depending on the type of the combined masks).

    **Computation Parameters**

    1. For each of the mask in ``masks``, fetch it. Silently ignore missing masks if the name has a
       ``?`` suffix. Invert the mask if the name has a ``~`` prefix. If the name has a ``|`` prefix
       (before the ``~`` prefix, if any), then bitwise-OR the mask into the OR mask, otherwise (or if
       it has a ``&`` prefix), bitwise-AND the mask into the AND mask.

    2. Combine (bitwise-AND) the AND mask and the OR mask into a single mask.

    3. If ``invert`` (default: {invert}), invert the result combined mask.
    """
    assert len(masks) > 0

    per: Optional[str] = None

    and_mask: Optional[ut.NumpyVector] = None
    or_mask: Optional[ut.NumpyVector] = None

    for mask_name in masks:
        log_mask_name = mask_name

        if mask_name[0] == "|":
            is_or = True
            mask_name = mask_name[1:]
        else:
            is_or = False
            if mask_name[0] == "&":
                mask_name = mask_name[1:]

        if mask_name[0] == "~":
            invert_mask = True
            mask_name = mask_name[1:]
        else:
            invert_mask = False

        if mask_name[-1] == "?":
            must_exist = False
            mask_name = mask_name[:-1]
        else:
            must_exist = True

        if mask_name in adata.obs:
            mask_per = "o"
            mask = ut.get_o_numpy(
                adata, mask_name, formatter=ut.mask_description) > 0
        elif mask_name in adata.var:
            mask_per = "v"
            mask = ut.get_v_numpy(
                adata, mask_name, formatter=ut.mask_description) > 0
        else:
            if must_exist:
                raise KeyError(f"unknown mask data: {mask_name}")
            continue

        if mask.dtype != "bool":
            raise ValueError(f"the data: {mask_name} is not a boolean mask")

        if invert_mask:
            mask = ~mask

        if ut.logging_calc():
            ut.log_calc(log_mask_name, mask)

        if per is None:
            per = mask_per
        else:
            if mask_per != per:
                raise ValueError(
                    "mixing per-observation and per-variable masks")

        if is_or:
            if or_mask is None:
                or_mask = mask
            else:
                or_mask = or_mask | mask
        else:
            if and_mask is None:
                and_mask = mask
            else:
                and_mask = and_mask & mask

    if and_mask is not None:
        if or_mask is not None:
            combined_mask = and_mask & or_mask
        else:
            combined_mask = and_mask
    else:
        if or_mask is not None:
            combined_mask = or_mask
        else:
            raise ValueError("no masks to combine")

    if invert:
        combined_mask = ~combined_mask

    if to is None:
        ut.log_return("combined", combined_mask)
        if per == "o":
            return ut.to_pandas_series(combined_mask, index=adata.obs_names)
        assert per == "v"
        return ut.to_pandas_series(combined_mask, index=adata.var_names)

    if per == "o":
        ut.set_o_data(adata, to, combined_mask)
    else:
        ut.set_v_data(adata, to, combined_mask)

    return None
Esempio n. 10
0
def _collect_group_data(
    group_index: int,
    *,
    group_of_cells: ut.NumpyVector,
    cells_data: ut.ProperMatrix,
    compatible_size: Optional[int],
    downsample_min_samples: int,
    downsample_min_cell_quantile: float,
    downsample_max_cell_quantile: float,
    min_gene_total: int,
    random_seed: int,
    variance_per_gene_per_group: ut.NumpyMatrix,
    normalized_variance_per_gene_per_group: ut.NumpyMatrix,
) -> None:
    cell_indices = np.where(group_of_cells == group_index)[0]
    cells_count = len(cell_indices)
    if cells_count < 2:
        return

    if compatible_size is None:
        ut.log_calc("  cells", cells_count)
    else:
        assert 0 < compatible_size <= cells_count
        if compatible_size < cells_count:
            np.random.seed(random_seed)
            if ut.logging_calc():
                ut.log_calc("  cells: " + ut.ratio_description(
                    len(cell_indices), "cell", compatible_size, "compatible"))
            cell_indices = np.random.choice(cell_indices,
                                            size=compatible_size,
                                            replace=False)
            assert len(cell_indices) == compatible_size

    assert ut.is_layout(cells_data, "row_major")
    group_data = cells_data[cell_indices, :]

    total_per_cell = ut.sum_per(group_data, per="row")
    samples = int(
        round(
            min(
                max(downsample_min_samples,
                    np.quantile(total_per_cell, downsample_min_cell_quantile)),
                np.quantile(total_per_cell, downsample_max_cell_quantile),
            )))
    if ut.logging_calc():
        ut.log_calc(f"  samples: {samples}")
    downsampled_data = ut.downsample_matrix(group_data,
                                            per="row",
                                            samples=samples,
                                            random_seed=random_seed)

    downsampled_data = ut.to_layout(downsampled_data, layout="column_major")
    total_per_gene = ut.sum_per(downsampled_data, per="column")
    too_small_genes = total_per_gene < min_gene_total
    if ut.logging_calc():
        included_genes_count = len(too_small_genes) - np.sum(too_small_genes)
        ut.log_calc(f"  included genes: {included_genes_count}")

    variance_per_gene = ut.variance_per(downsampled_data, per="column")
    normalized_variance_per_gene = ut.normalized_variance_per(downsampled_data,
                                                              per="column")

    variance_per_gene[too_small_genes] = None
    normalized_variance_per_gene[too_small_genes] = None

    variance_per_gene_per_group[group_index, :] = variance_per_gene
    normalized_variance_per_gene_per_group[
        group_index, :] = normalized_variance_per_gene