Esempio n. 1
0
def _prepare_meta_env(env):
    if ML:
        if env_ind == 2:
            task_samplers = task_sampler.SetTaskSampler(lambda: RL2Env(ML1.get_train_tasks('push-v1'), random_init=False))
        elif env_ind == 3:
            task_samplers = task_sampler.SetTaskSampler(lambda: RL2Env(ML1.get_train_tasks('reach-v1'), random_init=False))
        elif env_ind == 4:
            task_samplers = task_sampler.SetTaskSampler(lambda: RL2Env(ML1.get_train_tasks('pick-place-v1'), random_init=False))
    else:
        task_samplers = task_sampler.SetTaskSampler(lambda: RL2Env(env()))
    return task_samplers.sample(1)[0](), task_samplers
Esempio n. 2
0
 def test_observation_dimension_with_max_obs_dim(self):
     env = PointEnv()
     wrapped_env = RL2Env(PointEnv(), max_obs_dim=10)
     assert wrapped_env.spec.observation_space.shape[
         0] == 10 + env.action_space.shape[0] + 2
     obs = wrapped_env.reset()
     assert 10 + env.action_space.shape[0] + 2 == obs.shape[0]
     obs, _, _, _ = wrapped_env.step(env.action_space.sample())
     assert 10 + env.action_space.shape[0] + 2 == obs.shape[0]
Esempio n. 3
0
 def test_observation_dimension(self):
     env = PointEnv()
     wrapped_env = RL2Env(PointEnv())
     assert wrapped_env.spec.observation_space.shape[0] == (
         env.observation_space.shape[0] + env.action_space.shape[0] + 2)
     obs = env.reset()
     obs2 = wrapped_env.reset()
     assert obs.shape[0] + env.action_space.shape[0] + 2 == obs2.shape[0]
     obs, _, _, _ = env.step(env.action_space.sample())
     obs2, _, _, _ = wrapped_env.step(env.action_space.sample())
     assert obs.shape[0] + env.action_space.shape[0] + 2 == obs2.shape[0]
Esempio n. 4
0
    def test_benchmark_rl2(self):  # pylint: disable=no-self-use
        """Compare benchmarks between metarl and baselines."""
        # test set has a higher max_obs_dim
        env_obs_dim = [env().observation_space.shape[0] for (_, env) in ML45_ENVS['test'].items()]
        max_obs_dim = max(env_obs_dim)
        env_id = 'ML45'
        ML_train_envs = [
            TaskIdWrapper(NormalizedRewardEnv(RL2Env(env(*ML45_ARGS['train'][task]['args'],
                **ML45_ARGS['train'][task]['kwargs']), max_obs_dim)), task_id=task_id, task_name=task)
            for (task_id, (task, env)) in enumerate(ML45_ENVS['train'].items())
        ]
        tasks = task_sampler.EnvPoolSampler(ML_train_envs)
        tasks.grow_pool(hyper_parameters['meta_batch_size'])
        envs = tasks.sample(hyper_parameters['meta_batch_size'])
        env = envs[0]()

        timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S-%f')
        benchmark_dir = './data/local/benchmarks/rl2/%s/' % timestamp
        result_json = {}

        # Start main loop
        seeds = random.sample(range(100), hyper_parameters['n_trials'])
        task_dir = osp.join(benchmark_dir, env_id)
        metarl_tf_csvs = []

        for trial in range(hyper_parameters['n_trials']):
            seed = seeds[trial]
            trial_dir = task_dir + '/trial_%d_seed_%d' % (trial + 1, seed)
            metarl_tf_dir = trial_dir + '/metarl'

            with tf.Graph().as_default():
                env.reset()
                metarl_tf_csv = run_metarl(env, envs, tasks, seed, metarl_tf_dir)

            metarl_tf_csvs.append(metarl_tf_csv)

        with open(osp.join(metarl_tf_dir, 'parameters.txt'), 'w') as outfile:
            hyper_parameters_copy = copy.deepcopy(hyper_parameters)
            hyper_parameters_copy['sampler_cls'] = str(hyper_parameters_copy['sampler_cls'])
            json.dump(hyper_parameters_copy, outfile)

        g_x = 'TotalEnvSteps'
        g_ys = [
            'Evaluation/AverageReturn',
            'Evaluation/SuccessRate',
        ]

        for g_y in g_ys:
            plt_file = osp.join(benchmark_dir,
                            '{}_benchmark_{}.png'.format(env_id, g_y.replace('/', '-')))
            Rh.relplot(g_csvs=metarl_tf_csvs,
                       b_csvs=None,
                       g_x=g_x,
                       g_y=g_y,
                       g_z='MetaRL',
                       b_x=None,
                       b_y=None,
                       b_z='ProMP',
                       trials=hyper_parameters['n_trials'],
                       seeds=seeds,
                       plt_file=plt_file,
                       env_id=env_id,
                       x_label=g_x,
                       y_label=g_y)
Esempio n. 5
0
def run_metarl(env, envs, tasks, seed, log_dir):
    """Create metarl Tensorflow PPO model and training.

    Args:
        env (dict): Environment of the task.
        seed (int): Random positive integer for the trial.
        log_dir (str): Log dir path.

    Returns:
        str: Path to output csv file

    """
    deterministic.set_seed(seed)
    snapshot_config = SnapshotConfig(snapshot_dir=log_dir,
                                     snapshot_mode='gap',
                                     snapshot_gap=10)
    with LocalTFRunner(snapshot_config) as runner:
        policy = GaussianGRUPolicy(
            hidden_dims=hyper_parameters['hidden_sizes'],
            env_spec=env.spec,
            state_include_action=False)

        baseline = MetaRLLinearFeatureBaseline(env_spec=env.spec)

        inner_algo = RL2PPO(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=hyper_parameters['max_path_length'] * hyper_parameters['rollout_per_task'],
            discount=hyper_parameters['discount'],
            gae_lambda=hyper_parameters['gae_lambda'],
            lr_clip_range=hyper_parameters['lr_clip_range'],
            optimizer_args=dict(
                max_epochs=hyper_parameters['optimizer_max_epochs'],
                tf_optimizer_args=dict(
                    learning_rate=hyper_parameters['optimizer_lr'],
                ),
            )
        )

        # Need to pass this if meta_batch_size < num_of_tasks
        task_names = list(ML45_ENVS['train'].keys())
        algo = RL2(
            policy=policy,
            inner_algo=inner_algo,
            max_path_length=hyper_parameters['max_path_length'],
            meta_batch_size=hyper_parameters['meta_batch_size'],
            task_sampler=tasks,
            task_names=None if hyper_parameters['meta_batch_size'] >= len(task_names) else task_names)

        # Set up logger since we are not using run_experiment
        tabular_log_file = osp.join(log_dir, 'progress.csv')
        text_log_file = osp.join(log_dir, 'debug.log')
        dowel_logger.add_output(dowel.TextOutput(text_log_file))
        dowel_logger.add_output(dowel.CsvOutput(tabular_log_file))
        dowel_logger.add_output(dowel.StdOutput())
        dowel_logger.add_output(dowel.TensorBoardOutput(log_dir))

        runner.setup(
            algo,
            envs,
            sampler_cls=hyper_parameters['sampler_cls'],
            n_workers=hyper_parameters['meta_batch_size'],
            worker_class=RL2Worker,
            sampler_args=dict(
                use_all_workers=hyper_parameters['use_all_workers']),
            worker_args=dict(
                n_paths_per_trial=hyper_parameters['rollout_per_task']))

        # meta evaluator
        env_obs_dim = [env().observation_space.shape[0] for (_, env) in ML45_ENVS['test'].items()]
        max_obs_dim = max(env_obs_dim)
        ML_test_envs = [
            TaskIdWrapper(NormalizedRewardEnv(RL2Env(env(*ML45_ARGS['test'][task]['args'],
                **ML45_ARGS['test'][task]['kwargs']), max_obs_dim)), task_id=task_id, task_name=task)
            for (task_id, (task, env)) in enumerate(ML45_ENVS['test'].items())
        ]
        test_tasks = task_sampler.EnvPoolSampler(ML_test_envs)
        test_tasks.grow_pool(hyper_parameters['n_test_tasks'])

        test_task_names = list(ML45_ENVS['test'].keys())

        runner.setup_meta_evaluator(test_task_sampler=test_tasks,
                                    n_exploration_traj=hyper_parameters['rollout_per_task'],
                                    n_test_rollouts=hyper_parameters['test_rollout_per_task'],
                                    n_test_tasks=hyper_parameters['n_test_tasks'],
                                    n_workers=hyper_parameters['n_test_tasks'],
                                    test_task_names=None if hyper_parameters['n_test_tasks'] >= len(test_task_names) else test_task_names)

        runner.train(n_epochs=hyper_parameters['n_itr'],
            batch_size=hyper_parameters['meta_batch_size'] * hyper_parameters['rollout_per_task'] * hyper_parameters['max_path_length'])

        dowel_logger.remove_all()

        return tabular_log_file
Esempio n. 6
0
def rl2_ppo_halfcheetah(ctxt=None, seed=1):
    """Train PPO with HalfCheetah environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    with LocalTFRunner(snapshot_config=ctxt) as runner:
        max_path_length = 100
        meta_batch_size = 10
        n_epochs = 50
        episode_per_task = 4

        # ---- For ML1-push
        from metaworld.benchmarks import ML1        
        tasks = task_sampler.SetTaskSampler(lambda: RL2Env(
            env=ML1.get_train_tasks('push-v1')))

        # ---- For HalfCheetahVel
        # tasks = task_sampler.SetTaskSampler(lambda: RL2Env(
        #     env=HalfCheetahVelEnv()))

        env_spec = tasks.sample(1)[0]().spec
        policy = GaussianGRUPolicy(name='policy',
                                   hidden_dim=64,
                                   env_spec=env_spec,
                                   state_include_action=False)

        baseline = LinearFeatureBaseline(env_spec=env_spec)

        inner_algo = RL2PPO(
            env_spec=env_spec,
            policy=policy,
            baseline=baseline,
            max_path_length=max_path_length * episode_per_task,
            discount=0.99,
            gae_lambda=0.95,
            lr_clip_range=0.2,
            optimizer_args=dict(
                batch_size=32,
                max_epochs=10,
            ),
            stop_entropy_gradient=True,
            entropy_method='max',
            policy_ent_coeff=0.02,
            center_adv=False,
        )

        algo = RL2(policy=policy,
                   inner_algo=inner_algo,
                   max_path_length=max_path_length,
                   meta_batch_size=meta_batch_size,
                   task_sampler=tasks)

        runner.setup(algo,
                     tasks.sample(meta_batch_size),
                     sampler_cls=LocalSampler,
                     n_workers=meta_batch_size,
                     worker_class=RL2Worker)

        runner.train(n_epochs=n_epochs,
                     batch_size=episode_per_task * max_path_length *
                     meta_batch_size)