def main(): """ :return: """ ### Settings mod = 5 w_patch = 16 * 2 """ Data (all important modalities) """ # folder_windows = r'C:\Users\Laurens_laptop_w\OneDrive - UGent\data\10lamb' train_data = get_10lamb_old(mod) img_x, img_y_tr, _, _ = get_training_data(train_data) # Normalise the input! img_x = rescale0to1(img_x) """ Train segmentation 1) reuse everything 2) fix encoder """ if 1: if 1: b_encoder_fixed = False info_enc_fixed = '_enc_fixed' if b_encoder_fixed else '' get_info = lambda: f'10lamb_kfold_pretrained{info_enc_fixed}/unet_enc_k{k}_ifold{i_fold}' n_epochs = 40 k = 10 if k == 10: epoch_w = 100 else: raise NotImplementedError() ### Settings you don't have to change: w_patch = 50 w_ext_in = 28 b_double = False padding = 'valid' # TODO flag for converting encoder to dilated conv def get_unet_pretrained_encoder(): model_encoder = get_model_encoder() encoder_inputs = model_encoder.input decoder_outputs = decoder(model_encoder, f_out=2) model_pretrained_unet = Model(encoder_inputs, decoder_outputs) from methods.examples import compile_segm compile_segm(model_pretrained_unet, lr=1e-4) model_pretrained_unet.summary() return model_pretrained_unet """ Train """ k_fold_train_data = get_10lamb_6patches(5) for i_fold in range(6): """ Get a new network (not trained yet for segmentation) """ model_pretrained_unet = get_unet_pretrained_encoder() n_pretrained_unet = NeuralNet(model_pretrained_unet) """ The data """ train_data_i = k_fold_train_data.k_split_i(i_fold) info = get_info() img_y_tr = train_data_i.get_y_train() img_y_te = train_data_i.get_y_test() flow_tr = get_flow( img_x, img_y_tr, w_patch=w_patch, # Comes from 10 w_ext_in=w_ext_in) flow_te = get_flow( img_x, img_y_te, w_patch=w_patch, # Comes from 10 w_ext_in=w_ext_in) n_pretrained_unet.train(flow_tr, flow_te, epochs=n_epochs, verbose=1, info=info) """ Prediction """ n_pretrained_unet.w_ext = w_ext_in y_pred = n_pretrained_unet.predict(img_x) concurrent([y_pred[..., 1]]) """ Classification """ if 1: im_clean = img_x[..., :3] k = 8 i_fold = 3 epoch_last = 40 from methods.examples import kappa_loss, weighted_categorical_crossentropy from performance.metrics import accuracy_with0, jaccard_with0 loss = weighted_categorical_crossentropy((1, 1)) list_y_pred = [] ### K fold validation k_fold_train_data = get_10lamb_6patches(5) train_data_i = k_fold_train_data.k_split_i(i_fold) img_y_tr = train_data_i.get_y_train() img_y_te = train_data_i.get_y_test() for epoch in np.arange(31, epoch_last + 1): filepath_model = f'/scratch/lameeus/data/ghent_altar/net_weight/10lamb_kfold/ti_unet_k{k}_kfold{i_fold}/w_{epoch}.h5' model = load_model(filepath_model, custom_objects={ 'loss': loss, 'accuracy_with0': accuracy_with0, 'jaccard_with0': jaccard_with0, 'kappa_loss': kappa_loss }) n = NeuralNet(model, w_ext=10) y_pred = n.predict(img_x) list_y_pred.append(y_pred) y_pred_mean = np.mean(list_y_pred, axis=0) q1 = y_pred_mean[..., 1] concurrent([q1, q1.round(), im_clean]) """ Optimal threshold (making conf matrix symmetric, not based on maximising kappa) """ y_gt = np.any([img_y_tr, img_y_te], axis=0) from performance.testing import _get_scores, filter_non_zero def foo_performance(y_true, y_pred, thresh): # is basically argmax y_pred_thresh_arg = np.greater_equal(y_pred[..., 1], thresh) y_true_flat, y_pred_thresh_arg_flat = filter_non_zero( y_true, y_pred_thresh_arg) y_te_argmax = np.argmax(y_true_flat, axis=-1) # Kappa return _get_scores(y_te_argmax, y_pred_thresh_arg_flat)[-1] """ 1. BEST? PERFORMANCE based on test set """ print('1. Test distribution optimization') thresh = optimal_test_thresh_equal_distribution(img_y_te, y_pred_mean) q1_thresh = np.greater_equal(q1, thresh) concurrent([q1, q1_thresh, im_clean]) print(f'thresh: {thresh}') # Test, train, both print('Kappa performance:') print('\ttrain:', foo_performance(img_y_tr, y_pred_mean, thresh)) print('\ttestset:', foo_performance(img_y_te, y_pred_mean, thresh)) print('\tboth:', foo_performance(y_gt, y_pred_mean, thresh)) print('\nIncremental optimization on test set') test_thresh2 = test_thresh_incremental(y_pred_mean, img_y_tr, img_y_te, n=5, verbose=0) print('Kappa performance:') print('\ttrain:', foo_performance(img_y_tr, y_pred_mean, test_thresh2)) print('\ttestset:', foo_performance(img_y_te, y_pred_mean, test_thresh2)) print('\tboth:', foo_performance(y_gt, y_pred_mean, test_thresh2)) """ 2. based on train """ print('\n2. Training distribution optimization') thresh = optimal_test_thresh_equal_distribution(img_y_tr, y_pred_mean) q1_thresh = np.greater_equal(q1, thresh) concurrent([q1, q1_thresh, im_clean]) print(f'thresh: {thresh}') # Test, train, both print('Kappa performance:') print('\ttrain:', foo_performance(img_y_tr, y_pred_mean, thresh)) print('\ttestset:', foo_performance(img_y_te, y_pred_mean, thresh)) print('\tboth:', foo_performance(y_gt, y_pred_mean, thresh)) """ 3. CONSISTENT: based on train+set """ print('\n3. all GT distribution optimization') thresh = optimal_test_thresh_equal_distribution(y_gt, y_pred_mean) q1_thresh = np.greater_equal(q1, thresh) concurrent([q1, q1_thresh, im_clean]) print(f'thresh: {thresh}') # Test, train, both print('Kappa performance:') print('\ttrain:', foo_performance(img_y_tr, y_pred_mean, thresh)) print('\ttestset:', foo_performance(img_y_te, y_pred_mean, thresh)) print('\tboth:', foo_performance(y_gt, y_pred_mean, thresh)) if 0: """ 4. DUMB/Not needed: Based on prediction of whole panel """ thresh = optimal_test_thresh_equal_distribution(y_gt, y_pred_mean, mask_true=False) q1_thresh = np.greater_equal(q1, thresh) concurrent([q1, q1_thresh, im_clean]) print('Done')
def train_segm(self): from figures_paper.overlay import semi_transparant if self.fixed_enc == -2: def get_n_model_regular(i_fold=None, k=None, epoch=None): n_in = 9 model_tiunet = ti_unet(n_in, filters=k, w=self.w_patch, ext_in=10 // 2, batch_norm=True, wrong_batch_norm=True) compile_segm(model_tiunet, 1e-4) """ TODO wrong tiunet """ n = NeuralNet(model_tiunet, w_ext=10) info = f'10lamb_kfold/ti_unet_k{k}_kfold{i_fold}' folder = os.path.join( '/scratch/lameeus/data/ghent_altar/net_weight', info) n.load(folder=folder, epoch=epoch) return n n_segm = get_n_model_regular(i_fold=self.i_fold, k=self.k, epoch=40) elif self.fixed_enc == -1: # No init model_segm = self.get_tiunet_preenc(k=self.k, lr=self.lr_opt) n_segm = NeuralNet(model_segm, w_ext=self.w_ext_in_ti) elif self.fixed_enc in [0, 1, 2]: # Load model model_segm = self.get_tiunet_preenc(k=self.k, lr=self.lr_opt) n_segm = NeuralNet(model_segm, w_ext=self.w_ext_in_ti) # Train on set folder_weights = '/scratch/lameeus/data/ghent_altar/net_weight' if self.fixed_enc == 0: folder1 = '10lamb_kfold_pretrained_batchnorm' elif self.fixed_enc == 1: folder1 = '10lamb_kfold_pretrained_encfixed_batchnorm' elif self.fixed_enc == 2: folder1 = '10lamb_kfold_pretrained_prefixed_batchnorm' folder2 = f'{"tiunet"}_d{self.depth}_k{self.k}_ifold{self.i_fold}' n_segm.load(os.path.join(folder_weights, folder1, folder2), 100) elif self.fixed_enc == 3: model_segm = self.get_tiunet_preenc(k=self.k, lr=self.lr_opt, set_info=f'_{self.set_nr}', epoch_start=100) n_segm = NeuralNet(model_segm, w_ext=self.w_ext_in_ti) else: NotImplementedError() def foo(n_segm, b=0): y_pred = n_segm.predict(self.img_x) thresh_single = optimal_test_thresh_equal_distribution( self.img_y_te, y_pred) # data_single_i = {'k': self.k, # 'i_fold': i_fold, # 'epoch': epoch} print(foo_performance(self.img_y_te, y_pred, thresh_single)) img_clean = self.img_x[..., :3] concurrent([ img_clean, y_pred[..., 1], y_pred[..., 1] >= thresh_single, semi_transparant(img_clean, y_pred[..., 1] >= thresh_single) ]) if b: from data.datatools import imsave folder = '/home/lameeus/data/ghent_altar/output/hierarchy/' info_epoch = f'_epoch{n_segm.epoch}' if n_segm.epoch > 0 else '' filename = folder + f'13_small/pred_transfer_kfoldenc{self.fixed_enc}_ifold{self.i_fold}_avg{info_epoch}.png' imsave(filename, y_pred[..., 1]) def set_encoder_state(model, trainable=False): assert len(model.layers) == 14 for layer in model.layers[:7]: layer.trainable = trainable compile_segm(model) n_segm.epoch = 0 # Without pretraining foo(n_segm) # epochs set_encoder_state(n_segm.model, trainable=False) for _ in range(10): n_segm.train(self.flow_tr_10, epochs=1, verbose=2) foo(n_segm, 0) if 0: set_encoder_state(n_segm.model, trainable=True) for _ in range(1): n_segm.train(self.flow_tr_set_10, epochs=10, verbose=2) foo(n_segm, 0) set_encoder_state(n_segm.model, trainable=True) for _ in range(10): n_segm.train(self.flow_tr_set, epochs=1, verbose=2) foo(n_segm, 0)
class Main(object): def __init__(self, k=None, seed=None): if k is not None: self.k = k self.seed = seed self.model() self.train() def model(self, b_optimal_lr=False): features_out = 3 if data_name == '19botrightcrack3' else 2 if model_name == 'ti-unet': model = ti_unet( 9, filters=self.k, w=w_patch, ext_in=w_ext_in // 2, batch_norm=True, max_depth=d, features_out=features_out, ) elif model_name == 'unet': # model = ti_unet(9, filters=self.k, w=w_patch, ext_in=w_ext_in // 2, batch_norm=True, # max_depth=d) print('NO BATCH NORM? (not implemented)') model = unet(9, filters=self.k, w=w_patch, ext_in=w_ext_in // 2, max_depth=d, n_per_block=1) else: raise ValueError(model_name) model.summary() compile_segm(model, lr=lr) if b_optimal_lr: from neuralNetwork.optimization import find_learning_rate global flow_tr find_learning_rate(model, flow_tr) self.neural_net = NeuralNet(model, w_ext=w_ext_in) if data_name[:5] == '1319_': # pre Load model! # TODO which epoch to start from, I guess 10 should have an impact epoch_start = 50 # probably better (learned something) self.neural_net.load( f'C:/Users/admin/Data/ghent_altar/net_weight/1319/{model_name}_d{d}_k{self.k}', epoch=epoch_start) def train(self, epochs=epochs, steps_per_epoch=100): global flow_tr info = f'{data_name}/{model_name}_d{d}_k{self.k}' try: if n_per_class is not None: info = '_'.join([info, f'n{n_per_class}']) except NameError: pass # If n_per_class does not exist, don't add it if self.seed is not None: info += f'_s{self.seed}' self.neural_net.train( flow_tr, # validation=flow_va, epochs=epochs, steps_per_epoch=steps_per_epoch, info=info) # Solve Memory problems? del self.neural_net def eval(self): pass
def train_segm(self): folder_save = '/home/lameeus/data/ghent_altar/dataframes' info_batchnorm = '_batchnorm' if self.batch_norm else '' info_fixed = '_encfixed' if self.fixed_enc == 1 else '_prefixed' if self.fixed_enc == 2 else '' info_model = 'tiunet' if self.ti else 'unet' filename_single = f'pretrained/{info_model}_10lamb_kfold{info_fixed}{info_batchnorm}/d{self.depth}_single' path_single = os.path.join(folder_save, filename_single + '.csv') get_info = lambda: f'10lamb_kfold_pretrained{info_fixed}{info_batchnorm}/{info_model}_d{self.depth}_k{self.k}_ifold{i_fold}' img_y_all = self.k_fold_train_data.get_train_data_all().get_y_train() def get_model(): if self.ti: model = self.get_tiunet_preenc(k=self.k, lr=self.lr_opt) else: model = self.get_unet_preenc(k=self.k, lr=self.lr_opt) if self.fixed_enc == 2: n_temp = NeuralNet(model) folder_weights = '/scratch/lameeus/data/ghent_altar/net_weight' folder1 = f'10lamb_kfold_pretrained{"_encfixed"}{info_batchnorm}' folder2 = f'{info_model}_d{self.depth}_k{self.k}_ifold{i_fold}' n_temp.load(os.path.join(folder_weights, folder1, folder2), 100) del (n_temp) return model w_ext = self.w_ext_in_ti if self.ti else self.w_ext_in_ae if not self.lr_opt: model_segm = get_model() find_learning_rate(model_segm, self.flow_segm, lr1=1e0) for i_fold in range(6): print(f'i_fold = {i_fold}') model_segm = get_model() n_segm = NeuralNet(model_segm, w_ext=w_ext) train_data_i = self.k_fold_train_data.k_split_i(i_fold) img_y_tr = train_data_i.get_y_train() img_y_te = train_data_i.get_y_test() flow_tr = get_flow(self.img_x, img_y_tr, w_patch=self.w_patch, w_ext_in=w_ext) flow_te = get_flow(self.img_x, img_y_te, w_patch=self.w_patch, w_ext_in=w_ext) info = get_info() for epoch in range(self.epochs): n_segm.train(flow_tr, flow_te, epochs=1, verbose=2, info=info) y_pred = n_segm.predict(self.img_x) thresh_single = optimal_test_thresh_equal_distribution( img_y_all, y_pred) data_single_i = {'k': self.k, 'i_fold': i_fold, 'epoch': epoch} data_single_i.update( foo_performance(img_y_te, y_pred, thresh_single)) lst_data_single = [data_single_i] df_single = pd.DataFrame(lst_data_single) pandas_save(path_single, df_single, append=True) return
class Main(object): k = 8 n_per_class = 80 d = 1 epochs = 100 if d == 1: w_ext_in = 10 elif d == 2: w_ext_in = 26 w_patch = 10 if 0: lr = 1e-3 steps_per_epoch = 100 else: lr = 1e-4 steps_per_epoch = 1000 def __init__(self, k=None, n_per_class=None): if k is not None: self.k = k if n_per_class is not None: self.n_per_class = n_per_class # Get net self.model_train = self.main_net(set_net) from methods.basic import NeuralNet self.neural_net = NeuralNet(self.model_train, w_ext=self.w_ext_in) # Get data train_data = self.main_data(set_data) n_val_datas = len(self.val_datas) lst_data = [[] for _ in range(n_val_datas + 1)] for _ in range(self.epochs): # Train self.main_train(train_data) # Evaluate data_lst = self.main_eval(train_data) for i, data_i in enumerate(data_lst): data_i.update({'epoch': self.neural_net.epoch}) lst_data[i].append(data_i) for i in range(n_val_datas + 1): df = pd.DataFrame(lst_data[i]) print(df) if i == 0: data_name = 'val' else: data_name = self.val_datas[i - 1]['name'] model_name = f'{set_net["name"]}_data{data_name}_d{self.d}_k{self.k}_n{self.n_per_class}' pandas_save( f'C:/Users/admin/OneDrive - ugentbe/data/dataframes/{model_name}.csv', df, append=True) if 0: if 0: self.neural_net.load( 'C:/Users/admin/Data/ghent_altar/net_weight/tiunet_d1_k10_n80', 4) self.main_eval(train_data, b_plot=True) print("Finished init") def main_net(self, set_n): from methods.examples import compile_segm from neuralNetwork.architectures import ti_unet, convNet, unet n_name = set_n['name'].lower() if n_name == 'ti-unet': model = ti_unet(9, filters=self.k, w=self.w_patch, ext_in=self.w_ext_in // 2, batch_norm=True, max_depth=self.d) elif n_name == 'simple': model = convNet(9, self.k, w_in=self.w_patch + self.w_ext_in, n_convs=5, batch_norm=False, padding='valid') assert model.output_shape[-3:] == (self.w_patch, self.w_patch, 2) elif n_name == 'unet': print('NO BATCH NORM? (not implemented)') model = unet(9, filters=self.k, w=self.w_patch, ext_in=self.w_ext_in // 2, max_depth=self.d, n_per_block=1) else: raise ValueError(n_name) # raise NotImplementedError('Unet is not well implemented: * Double, batchnorm? f per layer etc?') model.summary() compile_segm( model, lr=self.lr) # instead of 10e-3, 10e-4 is probs more stable. return model def main_data(self, set_data): if set_data['name'] == 'zach_sh': from datasets.default_trainingsets import get_13botleftshuang train_data = get_13botleftshuang(mod, n_per_class=self.n_per_class) else: raise NotImplementedError() from data.preprocessing import rescale0to1 train_data.x = rescale0to1(train_data.x) from datasets.default_trainingsets import xy_from_df, panel13withoutRightBot from datasets.examples import get_13zach _, img_y = xy_from_df(get_13zach(), mod) img_y_top2, _ = panel13withoutRightBot(img_y) img_y_test = np.logical_or(img_y_top2, train_data.get_y_test()) self.val_datas = [{ 'name': '13_top2', 'y': img_y_top2 }, { 'name': '13_test', 'y': img_y_test }] return train_data def main_train(self, train_data, steps_per_epoch=None): if steps_per_epoch is None: steps_per_epoch = self.steps_per_epoch from main_general import get_training_data from preprocessing.image import get_flow # TODO train x_train, y_train, x_val, y_val = get_training_data(train_data) # Generator flow_tr = get_flow(x_train, y_train, w_patch=self.w_patch, w_ext_in=self.w_ext_in) flow_va = get_flow(x_val, y_val, w_patch=self.w_patch, w_ext_in=self.w_ext_in) epochs = 1 self.neural_net.train( flow_tr, validation=flow_va, epochs=epochs, steps_per_epoch=steps_per_epoch, info=f'{set_net["name"]}_d{self.d}_k{self.k}_n{self.n_per_class}') def main_eval( self, train_data, b_plot=False, ): x = train_data.get_x_test() y_pred = self.neural_net.predict(x) if b_plot: concurrent([x[..., :3], y_pred[..., 1]], ['input', 'prediction']) val_datas = [{'y': train_data.get_y_test()}] + self.val_datas return _eval_func(y_pred, val_datas, b_plot=b_plot)