Esempio n. 1
0
def daun():

	# fixed-sizes for image
	fixed_size = tuple((1000,1000)) #Resize pixel menjadi px x px


	filename = open('data.csv', 'r')
	dataframe = pandas.read_csv(filename)

	kelas = dataframe.drop(dataframe.columns[:-1], axis=1)
	data = dataframe.drop(dataframe.columns[-1:], axis=1)

	# print(data)
	# print(kelas)

	# empty lists to hold feature vectors and labels
	global_features = []
	labels = []

	i, j = 0, 0
	k = 0


	# create all the machine learning models
	models = []
	models.append(('Random Forest',RandomForestClassifier(max_depth=None, random_state=0)))

	# variables to hold the results and names
	results = []
	names = []
	scoring = "accuracy"

	# filter all the warnings
	import warnings
	warnings.filterwarnings('ignore')

	# 10-fold cross validation
	for name, model in models:
	    kfold = KFold(n_splits=10, random_state=7)
	    cv_results = cross_val_score(model, data, kelas, cv=kfold, scoring=scoring)
	    results.append(cv_results)
	    names.append(name)
	    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
	    print(msg)


	import matplotlib.pyplot as plt

	# create the model - Random Forests
	clf  =  RandomForestClassifier(max_depth=None, random_state=0)
	# fit the training data to the model
	clf.fit(data,kelas)

	image = cv2.imread('daona2_2.jpg')
	image = cv2.resize(image, fixed_size)
	humoments = mp.hu_moments(image)
	cannywhite = mp.canny(image)
	morphsum = mp.morph(image)
	H,S,V = mp.rataHSV(image)
	diamA, diamB = mp.diameterDetect(image)
	red,green,blue = mp.rataRGB(image)
	global_feature = np.hstack([humoments, cannywhite, morphsum, H, S, V, diamA, diamB])
	prediction = clf.predict(global_feature.reshape(1,-1))[0]
	return render_template('result.html', prediksi = prediction)
Esempio n. 2
0
# Membuat model - Random Forests
clf = RandomForestClassifier(max_depth=None, random_state=5)
# Memasukan data training kedalam model
clf.fit(data, kelas)
# Path dari data test
test_path = "./data_test/"

for file in glob.glob(
        test_path + "/*.jpg"
):  #Melakukan loop ke semua file di dalam folder dan menambahkan nama filenya yang berekstensi .jpg
    image = cv2.imread(file)  #Membaca image
    wpercent = (mywidth / float(image.size[0]))
    hsize = int((float(image.size[1]) * float(wpercent)))
    image = image.resize((mywidth, hsize), PIL.Image.ANTIALIAS)
    #Ekstrasi informasi dari gambar
    humoments = mp.hu_moments(image)
    cannywhite = mp.canny(image)
    morphsum = mp.morph(image)
    H, S, V = mp.rataHSV(image)
    diamA, diamB = mp.diameterDetect(image)
    #Menggabungkan informasi atribut
    global_feature = np.hstack(
        [humoments, cannywhite, morphsum, H, S, V, diamA, diamB])
    # Melakukan prediksi gambar
    prediction = clf.predict(global_feature.reshape(1, -1))[0]
    print(prediction)
    # Jika ingin melihat hasil output gambar, hapus # pada kode dibawah
    #cv2.putText(image,prediction, (20,30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,255), 3)
    #plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    #plt.show()
    tanya = input("Apakah klasifikasi benar? Y/N")