Esempio n. 1
0
def test_declarative_sfc_obs_changes(ccrs):
    """Test making a surface observation plot, changing the field."""
    data = pd.read_csv(get_test_data('SFC_obs.csv', as_file_obj=False),
                       infer_datetime_format=True, parse_dates=['valid'])

    obs = PlotObs()
    obs.data = data
    obs.time = datetime(1993, 3, 12, 12)
    obs.level = None
    obs.fields = ['tmpf']
    obs.colors = ['black']
    obs.time_window = timedelta(minutes=15)

    # Panel for plot with Map features
    panel = MapPanel()
    panel.layout = (1, 1, 1)
    panel.projection = ccrs.PlateCarree()
    panel.area = 'in'
    panel.layers = ['states']
    panel.plots = [obs]
    panel.title = f'Surface Observations for {obs.time}'

    # Bringing it all together
    pc = PanelContainer()
    pc.size = (10, 10)
    pc.panels = [panel]

    pc.draw()

    obs.fields = ['dwpf']
    obs.colors = ['green']

    return pc.figure
Esempio n. 2
0
def test_declarative_title_fontsize():
    """Test adjusting the font size of a MapPanel's title text."""
    data = xr.open_dataset(get_test_data('NAM_test.nc', as_file_obj=False))

    contour = ContourPlot()
    contour.data = data
    contour.field = 'Geopotential_height_isobaric'
    contour.level = 300 * units.hPa
    contour.linewidth = 2
    contour.contours = list(range(0, 2000, 12))
    contour.scale = 1e-1

    panel = MapPanel()
    panel.area = (-124, -72, 20, 53)
    panel.projection = 'lcc'
    panel.layers = ['coastline', 'borders', 'usstates']
    panel.plots = [contour]
    panel.title = '300 mb Geopotential Height'
    panel.title_fontsize = 20

    pc = PanelContainer()
    pc.size = (8, 8)
    pc.panels = [panel]
    pc.draw()

    return pc.figure
Esempio n. 3
0
def test_copy():
    """Test that the copy method works for all classes in `declarative.py`."""
    # Copies of plot objects
    objects = [ImagePlot(), ContourPlot(), FilledContourPlot(), BarbPlot(), PlotObs(),
               PlotGeometry()]

    for obj in objects:
        obj.time = datetime.now()
        copied_obj = obj.copy()
        assert obj is not copied_obj
        assert obj.time == copied_obj.time

    # Copies of MapPanel and PanelContainer
    obj = MapPanel()
    obj.title = 'Sample Text'
    copied_obj = obj.copy()
    assert obj is not copied_obj
    assert obj.title == copied_obj.title

    obj = PanelContainer()
    obj.size = (10, 10)
    copied_obj = obj.copy()
    assert obj is not copied_obj
    assert obj.size == copied_obj.size

    # Copies of plots in MapPanels should not point to same location in memory
    obj = MapPanel()
    obj.plots = [PlotObs(), PlotGeometry(), BarbPlot(), FilledContourPlot(), ContourPlot(),
                 ImagePlot()]
    copied_obj = obj.copy()

    for i in range(len(obj.plots)):
        assert obj.plots[i] is not copied_obj.plots[i]
Esempio n. 4
0
def test_attribute_error_station(ccrs):
    """Make sure we get a useful error when the station variable is not found."""
    data = pd.read_csv(get_test_data('SFC_obs.csv', as_file_obj=False),
                       infer_datetime_format=True, parse_dates=['valid'])
    data.rename(columns={'station': 'location'}, inplace=True)

    obs = PlotObs()
    obs.data = data
    obs.time = datetime(1993, 3, 12, 12)
    obs.level = None
    obs.fields = ['tmpf']
    obs.time_window = timedelta(minutes=15)

    # Panel for plot with Map features
    panel = MapPanel()
    panel.layout = (1, 1, 1)
    panel.projection = ccrs.PlateCarree()
    panel.area = 'in'
    panel.layers = ['states']
    panel.plots = [obs]
    panel.title = f'Surface Observations for {obs.time}'

    # Bringing it all together
    pc = PanelContainer()
    pc.size = (10, 10)
    pc.panels = [panel]

    with pytest.raises(AttributeError):
        pc.draw()
Esempio n. 5
0
def test_declarative_image():
    """Test making an image plot."""
    data = xr.open_dataset(GiniFile(get_test_data('NHEM-MULTICOMP_1km_IR_20151208_2100.gini')))

    img = ImagePlot()
    img.data = data.metpy.parse_cf('IR')
    img.colormap = 'Greys_r'

    panel = MapPanel()
    panel.title = 'Test'
    panel.plots = [img]

    pc = PanelContainer()
    pc.panel = panel
    pc.draw()

    assert panel.ax.get_title() == 'Test'

    return pc.figure
Esempio n. 6
0
def test_declarative_image():
    """Test making an image plot."""
    data = xr.open_dataset(GiniFile(get_test_data('NHEM-MULTICOMP_1km_IR_20151208_2100.gini')))

    img = ImagePlot()
    img.data = data.metpy.parse_cf('IR')
    img.colormap = 'Greys_r'

    panel = MapPanel()
    panel.title = 'Test'
    panel.plots = [img]

    pc = PanelContainer()
    pc.panel = panel
    pc.draw()

    assert panel.ax.get_title() == 'Test'

    return pc.figure
Esempio n. 7
0
def test_declarative_plot_geometry_polygons():
    """Test that `PlotGeometry` correctly plots MultiPolygon and Polygon objects."""
    from shapely.geometry import MultiPolygon, Polygon

    # MultiPolygons and Polygons to plot
    slgt_risk_polygon = MultiPolygon([Polygon(
        [(-87.43, 41.86), (-91.13, 41.39), (-95.24, 40.99), (-97.47, 40.4), (-98.39, 41.38),
         (-96.54, 42.44), (-94.02, 44.48), (-92.62, 45.48), (-89.49, 45.91), (-86.38, 44.92),
         (-86.26, 43.37), (-86.62, 42.45), (-87.43, 41.86), ]), Polygon(
        [(-74.02, 42.8), (-72.01, 43.08), (-71.42, 42.77), (-71.76, 42.29), (-72.73, 41.89),
         (-73.89, 41.93), (-74.4, 42.28), (-74.02, 42.8), ])])
    enh_risk_polygon = Polygon(
        [(-87.42, 43.67), (-88.44, 42.65), (-90.87, 41.92), (-94.63, 41.84), (-95.13, 42.22),
         (-95.23, 42.54), (-94.79, 43.3), (-92.81, 43.99), (-90.62, 44.55), (-88.51, 44.61),
         (-87.42, 43.67)])

    # Plot geometry, set colors and labels
    geo = PlotGeometry()
    geo.geometry = [slgt_risk_polygon, enh_risk_polygon]
    geo.stroke = ['#DDAA00', '#FF6600']
    geo.fill = None
    geo.labels = ['SLGT', 'ENH']
    geo.label_facecolor = ['#FFE066', '#FFA366']
    geo.label_edgecolor = ['#DDAA00', '#FF6600']
    geo.label_fontsize = 'large'

    # Place plot in a panel and container
    panel = MapPanel()
    panel.area = [-125, -70, 20, 55]
    panel.projection = 'lcc'
    panel.title = ' '
    panel.layers = ['coastline', 'borders', 'usstates']
    panel.plots = [geo]

    pc = PanelContainer()
    pc.size = (12, 12)
    pc.panels = [panel]
    pc.draw()

    return pc.figure
Esempio n. 8
0
def test_declarative_plot_geometry_lines(ccrs):
    """Test that `PlotGeometry` correctly plots MultiLineString and LineString objects."""
    from shapely.geometry import LineString, MultiLineString

    # LineString and MultiLineString to plot
    irma_fcst = LineString([(-52.3, 16.9), (-53.9, 16.7), (-56.2, 16.6),
                            (-58.6, 17.0), (-61.2, 17.8), (-63.9, 18.7),
                            (-66.8, 19.6), (-72.0, 21.0), (-76.5, 22.0)])
    irma_fcst_shadow = MultiLineString([
        LineString([(-52.3, 17.15), (-53.9, 16.95), (-56.2, 16.85),
                    (-58.6, 17.25), (-61.2, 18.05), (-63.9, 18.95),
                    (-66.8, 19.85), (-72.0, 21.25), (-76.5, 22.25)]),
        LineString([(-52.3, 16.65), (-53.9, 16.45), (-56.2, 16.35),
                    (-58.6, 16.75), (-61.2, 17.55), (-63.9, 18.45),
                    (-66.8, 19.35), (-72.0, 20.75), (-76.5, 21.75)])
    ])

    # Plot geometry, set colors and labels
    geo = PlotGeometry()
    geo.geometry = [irma_fcst, irma_fcst_shadow]
    geo.fill = None
    geo.stroke = 'green'
    geo.labels = ['Irma', '+/- 0.25 deg latitude']
    geo.label_facecolor = None

    # Place plot in a panel and container
    panel = MapPanel()
    panel.area = [-85, -45, 12, 25]
    panel.projection = ccrs.PlateCarree()
    panel.layers = ['coastline', 'borders', 'usstates']
    panel.title = 'Hurricane Irma Forecast'
    panel.plots = [geo]

    pc = PanelContainer()
    pc.size = (12, 12)
    pc.panels = [panel]
    pc.draw()

    return pc.figure
Esempio n. 9
0
wind_geo = PlotGeometry()
wind_geo.geometry = wind_data['geometry']
wind_geo.fill = wind_data['fill']
wind_geo.stroke = 'none'

###########################
# Plot the cities from the 'geometry' column, marked with diamonds ('D'). Label each point
# with the name of the city, and it's probability of tropical-storm-force winds on the line
# below. Points are set to plot in white and the font color is set to black.
city_geo = PlotGeometry()
city_geo.geometry = cities['geometry']
city_geo.marker = 'D'
city_geo.labels = cities['NAME'] + '\n(' + cities['PERCENTAGE'] + ')'
city_geo.fill = 'white'
city_geo.label_facecolor = 'black'

###########################
# Add the geometry plots to a panel and container. Finally, we are left with a complete plot of
# wind speed probabilities, along with some select cities and their specific probabilities.
panel = MapPanel()
panel.title = 'NHC 5-Day Tropical-Storm-Force Wind Probabilities (Valid 12z Aug 20 2021)'
panel.plots = [wind_geo, city_geo]
panel.area = [-90, -52, 27, 48]
panel.projection = 'mer'
panel.layers = ['lakes', 'land', 'ocean', 'states', 'coastline', 'borders']

pc = PanelContainer()
pc.size = (12, 10)
pc.panels = [panel]
pc.show()
Esempio n. 10
0
    get_test_data('spc_day1otlk_20210317_1200_lyr.geojson'))

###########################
# Preview the data.
day1_outlook

###########################
# Plot the shapes from the 'geometry' column. Give the shapes their fill and stroke color by
# providing the 'fill' and 'stroke' columns. Use text from the 'LABEL' column as labels for the
# shapes.
geo = PlotGeometry()
geo.geometry = day1_outlook['geometry']
geo.fill = day1_outlook['fill']
geo.stroke = day1_outlook['stroke']
geo.labels = day1_outlook['LABEL']
geo.label_fontsize = 'large'

###########################
# Add the geometry plot to a panel and container.
panel = MapPanel()
panel.title = 'SPC Day 1 Convective Outlook (Valid 12z Mar 17 2021)'
panel.plots = [geo]
panel.area = [-120, -75, 25, 50]
panel.projection = 'lcc'
panel.layers = ['lakes', 'land', 'ocean', 'states', 'coastline', 'borders']

pc = PanelContainer()
pc.size = (12, 8)
pc.panels = [panel]
pc.show()
Esempio n. 11
0
narr = xr.open_dataset(get_test_data('narr_example.nc', as_file_obj=False))

###########################
# Create a contour plot of temperature
contour = ContourPlot()
contour.data = narr
contour.field = 'Temperature'
contour.level = 850 * units.hPa
contour.linecolor = 'red'
contour.contours = 15

###########################
# Create an image plot of Geopotential height
img = ImagePlot()
img.data = narr
img.field = 'Geopotential_height'
img.level = 850 * units.hPa

###########################
# Plot the data on a map
panel = MapPanel()
panel.area = 'us'
panel.layers = ['coastline', 'borders', 'states', 'rivers', 'ocean', 'land']
panel.title = 'NARR Example'
panel.plots = [contour, img]

pc = PanelContainer()
pc.size = (10, 8)
pc.panels = [panel]
pc.show()
Esempio n. 12
0
###########################
# Create a contour plot of temperature
contour = ContourPlot()
contour.data = narr
contour.field = 'Temperature'
contour.level = 850 * units.hPa
contour.linecolor = 'red'
contour.contours = 15

###########################
# Create an image plot of Geopotential height
img = ImagePlot()
img.data = narr
img.field = 'Geopotential_height'
img.level = 850 * units.hPa


###########################
# Plot the data on a map
panel = MapPanel()
panel.area = 'us'
panel.layers = ['coastline', 'borders', 'states', 'rivers', 'ocean', 'land']
panel.title = 'NARR Example'
panel.plots = [contour, img]

pc = PanelContainer()
pc.size = (10, 8)
pc.panels = [panel]
pc.show()