def score(self, x_test, y_test): """确定当前模型的准确度 :param x_test: :param y_test: :return: """ y_predict = self.predict(x_test) return accuracy_score(y_test, y_predict)
def score(self, x_test, y_test): """算法准确率""" y_predict = self.predict(x_test) y_predict = np.array(y_predict) return accuracy_score(y_test, y_predict)
""" import sys from time import time sys.path.append("../tools/") from email_preprocess import preprocess ### features_train and features_test are the features for the training ### and testing datasets, respectively ### labels_train and labels_test are the corresponding item labels features_train, features_test, labels_train, labels_test = preprocess() ######################################################### ### your code goes here ### from sklearn.naive_bayes import GaussianNB from metric import accuracy_score clf = GaussianNB() clf.fit(features_train, labels_train) pred = clf.predict(features_test) score = accuracy_score(labels_test,pred) print score #########################################################
def acc(self, y, p): return accuracy_score(np.argmax(y, axis=1), np.argmax(p, axis=1))
def score(self, X, y): predictions = self.predict(X) return accuracy_score(y, predictions)
def score(self, x_test, y_test): y_predict = self.predict(x_test) return accuracy_score(y_test, y_predict)
# 提取每一个类别下的特征值的方差 以及 均值 sample_feature = sample[j] # 计算高斯密度 likelihood = self._calculate_likelihood( params["mean"], params["var"], sample_feature) posterior *= likelihood posteriors.append(posterior) # 求最大概率对应的类别 index_of_max = np.argmax(posteriors) return self.classes[index_of_max] def predict(self, X): y_pred = [] for sample in X: y = self._classify(sample) y_pred.append(y) return y_pred if __name__ == '__main__': from sklearn import datasets data = datasets.load_digits() X = normalize(data.data) y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4) clf = NaiveBayes() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) print(accuracy_score(y_pred, y_test))
if __name__ == '__main__': X, y = gen_mult_ser(3000) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4) clf = NeuralNetwork(optimizer=optimizer, loss=CrossEntropy) clf.add(RNN(10, activation="tanh", bptt_trunc=5, input_shape=(10, 61))) clf.add(Activation('softmax')) tmp_X = np.argmax(X_train[0], axis=1) tmp_y = np.argmax(y_train[0], axis=1) print("Number Series Problem:") print("X = [" + " ".join(tmp_X.astype("str")) + "]") print("y = [" + " ".join(tmp_y.astype("str")) + "]") print() train_err, _ = clf.fit(X_train, y_train, n_epochs=500, batch_size=512) y_pred = np.argmax(clf.predict(X_test), axis=2) y_test = np.argmax(y_test, axis=2) accuracy = np.mean(accuracy_score(y_test, y_pred)) print(accuracy) print() print("Results:") for i in range(5): tmp_X = np.argmax(X_test[i], axis=1) tmp_y1 = y_test[i] tmp_y2 = y_pred[i] print("X = [" + " ".join(tmp_X.astype("str")) + "]") print("y_true = [" + " ".join(tmp_y1.astype("str")) + "]") print("y_pred = [" + " ".join(tmp_y2.astype("str")) + "]") print()
def score(self, x_test, y_test): """当前模型的分类准确度""" y_predict = self.predict(x_test) return accuracy_score(y_test, y_predict)