elif args.dataset == 'mpii': lsp_train_dataset = MPII('train') lsp_val_dataset = MPII('valid') ## MPII('val') was present originally # Dataset and the Dataloade train_loader = torch.utils.data.DataLoader(lsp_train_dataset, batch_size=args.batch_size, shuffle=True) val_save_loader = torch.utils.data.DataLoader(lsp_val_dataset, batch_size=args.val_batch_size) val_eval_loader = torch.utils.data.DataLoader(lsp_val_dataset, batch_size=args.val_batch_size, shuffle=True) #train_eval = torch.utils.data.DataLoader(lsp_train_dataset, batch_size=args.val_batch_size, shuffle=True) pck = metrics.PCK(metrics.Options(256, 8)) # Loading on GPU, if available if (args.use_gpu): generator_model = generator_model.to(fast_device) discriminator_model_conf = discriminator_model_conf.to(fast_device) discriminator_model_pose = discriminator_model_pose.to(fast_device) # Cross entropy loss #criterion = nn.CrossEntropyLoss() # Setting the optimizer if (args.optimizer_type == 'SGD'): optim_gen = optim.SGD(generator_model.parameters(), lr=args.lr, momentum=args.momentum)
# MPII elif args.dataset == 'mpii': lsp_train_dataset = MPII('train') lsp_val_dataset = MPII('val') # Dataset and the Dataloade train_loader = torch.utils.data.DataLoader(lsp_train_dataset, batch_size=args.batch_size, shuffle=True) val_save_loader = torch.utils.data.DataLoader(lsp_val_dataset, batch_size=args.val_batch_size) val_eval_loader = torch.utils.data.DataLoader(lsp_val_dataset, batch_size=args.val_batch_size, shuffle=True) pck = metrics.PCK(metrics.Options(256, config['generator']['num_stacks'])) # Loading on GPU, if available if (args.use_gpu): generator_model = generator_model.to(fast_device) discriminator_model = discriminator_model.to(fast_device) # Cross entropy loss criterion = nn.CrossEntropyLoss() # Setting the optimizer if (args.optimizer_type == 'SGD'): optim_gen = optim.SGD(generator_model.parameters(), lr=args.lr, momentum=args.momentum) optim_disc = optim.SGD(discriminator_model.parameters(),