def makeMetrics(tmplFile, train=None, old=None, params={}, trainOutFile='out.csv'): """ Make the metrics """ maxTime = 60 # Number of time slice metrics ##################### BUILD A TemplateManager OBJECT #################### tmpl = templateManager.TemplateManager(fileName=tmplFile, trainObj=old, params=params) ########################### CREATE THE HEADER ########################### outHdr = metrics.buildHeader(tmpl) ###################### LOOP THROUGH THE FILES ########################### hL = [] for i in range(train.numH1): P, freqs, bins = train.H1Sample(i, params=params) out = metrics.computeMetrics(P, tmpl, bins, maxTime) hL.append([1, i] + out) for i in range(train.numH0): P, freqs, bins = train.H0Sample(i, params=params) out = metrics.computeMetrics(P, tmpl, bins, maxTime) hL.append([0, i] + out) hL = np.array(hL) file = open(trainOutFile, 'w') file.write("Truth,Index," + outHdr + "\n") np.savetxt(file, hL, delimiter=',') file.close()
def makeMetrics(tmplFile,train=None,old=None,params={},trainOutFile='out.csv'): """ Make the metrics """ maxTime = 60 # Number of time slice metrics ##################### BUILD A TemplateManager OBJECT #################### tmpl = templateManager.TemplateManager(fileName=tmplFile, trainObj=old, params=params) ########################### CREATE THE HEADER ########################### outHdr = metrics.buildHeader(tmpl) ###################### LOOP THROUGH THE FILES ########################### hL = [] for i in range(train.numH1): P, freqs, bins = train.H1Sample(i,params=params) out = metrics.computeMetrics(P, tmpl, bins, maxTime) hL.append([1, i] + out) for i in range(train.numH0): P, freqs, bins = train.H0Sample(i,params=params) out = metrics.computeMetrics(P, tmpl, bins, maxTime) hL.append([0, i] + out) hL = np.array(hL) file = open(trainOutFile,'w') file.write("Truth,Index,"+outHdr+"\n") np.savetxt(file,hL,delimiter=',') file.close()
def makeMetrics(tmplFile, test=None, old=None, params={}, testOutFile='out.csv'): """ Make the metrics """ maxTime = 60 # Number of time slice metrics ##################### BUILD A TemplateManager OBJECT #################### tmpl = templateManager.TemplateManager(fileName=tmplFile, trainObj=old, params=params) ########################### CREATE THE HEADER ########################### outHdr = metrics.buildHeader(tmpl) hL = [] ####################### LOOP THROUGH THE FILE ########################### for i in range(test.nTest): P, freqs, bins = test.TestSample(i, params=params) out = metrics.computeMetrics(P, tmpl, bins, maxTime) hL.append(out) hL = np.array(hL) ########################## WRITE TO FILE ################################ file = open(testOutFile, 'w') file.write(outHdr + "\n") np.savetxt(file, hL, delimiter=',') file.close()
def main(): ###################### WORKING DIRECTORY ######################## baseDir = globalConst.BASE_DIR ###################### SET OUTPUT FILE NAME HERE ######################## testOutFile = baseDir + 'workspace/testMetrics.csv' ############################## PARAMETERS ############################### dataDir = baseDir + 'data/' # Data directory templateDataDir = baseDir + 'template_data/' # Data directory params = { 'NFFT': 256, 'Fs': 2000, 'noverlap': 192 } # Spectogram parameters maxTime = 60 # Number of time slice metrics ######################## BUILD A TestData OBJECT ####################### train = fileio.TrainData(dataDir + 'train.csv', dataDir + 'train/') templateTrain = fileio.TrainData(templateDataDir + 'train.csv', templateDataDir + 'train/') test = fileio.TestData(dataDir + 'test/') ##################### BUILD A TemplateManager OBJECT #################### tmplFile = baseDir + 'moby/templateReduced.csv' tmpl = templateManager.TemplateManager(fileName=tmplFile, trainObj=templateTrain, params=params) ################## VERTICAL BARS FOR HIFREQ METRICS ##################### bar_ = np.zeros((12, 9), dtype='Float32') bar1_ = np.zeros((12, 12), dtype='Float32') bar2_ = np.zeros((12, 6), dtype='Float32') bar_[:, 3:6] = 1. bar1_[:, 4:8] = 1. bar2_[:, 2:4] = 1. ########################### CREATE THE HEADER ########################### outHdr = metrics.buildHeader(tmpl) hL = [] ####################### LOOP THROUGH THE FILE ########################### for i in range(test.nTest): printStatus(i) P, freqs, bins = test.TestSample(i + 1, params=params) out = metrics.computeMetrics(P, tmpl, bins, maxTime) out += metrics.highFreqTemplate(P, bar_) out += metrics.highFreqTemplate(P, bar1_) out += metrics.highFreqTemplate(P, bar2_) hL.append(out) hL = np.array(hL) ########################## WRITE TO FILE ################################ file = open(testOutFile, 'w') file.write(outHdr + "\n") np.savetxt(file, hL, delimiter=',') file.close()
def main(): baseDir = '/home/nick/whale/' # Base directory ###################### SET OUTPUT FILE NAME HERE ######################## trainOutFile = baseDir + 'workspace/trainMetrics.csv' ############################## PARAMETERS ############################### dataDir = baseDir + 'data/' # Data directory params = { 'NFFT': 256, 'Fs': 2000, 'noverlap': 192 } # Spectogram parameters maxTime = 60 # Number of time slice metrics ######################## BUILD A TrainData OBJECT ####################### train = fileio.TrainData(dataDir + 'train.csv', dataDir + 'train/') ##################### BUILD A TemplateManager OBJECT #################### tmplFile = baseDir + 'moby/templateReduced.csv' tmpl = templateManager.TemplateManager(fileName=tmplFile, trainObj=train, params=params) ################## VERTICAL BARS FOR HIFREQ METRICS ##################### bar_ = np.zeros((12, 9), dtype='Float32') bar1_ = np.zeros((12, 12), dtype='Float32') bar2_ = np.zeros((12, 6), dtype='Float32') bar_[:, 3:6] = 1. bar1_[:, 4:8] = 1. bar2_[:, 2:4] = 1. ########################### CREATE THE HEADER ########################### outHdr = metrics.buildHeader(tmpl) ###################### LOOP THROUGH THE FILES ########################### hL = [] for i in range(train.numH1): P, freqs, bins = train.H1Sample(i, params=params) out = metrics.computeMetrics(P, tmpl, bins, maxTime) out += metrics.highFreqTemplate(P, bar_) out += metrics.highFreqTemplate(P, bar1_) out += metrics.highFreqTemplate(P, bar2_) hL.append([1, i] + out) for i in range(train.numH0): P, freqs, bins = train.H0Sample(i, params=params) out = metrics.computeMetrics(P, tmpl, bins, maxTime) out += metrics.highFreqTemplate(P, bar_) out += metrics.highFreqTemplate(P, bar1_) out += metrics.highFreqTemplate(P, bar2_) hL.append([0, i] + out) hL = np.array(hL) file = open(trainOutFile, 'w') file.write("Truth,Index," + outHdr + "\n") np.savetxt(file, hL, delimiter=',') file.close()
def main(): baseDir = '/home/nick/whale/' # Base directory ###################### SET OUTPUT FILE NAME HERE ######################## trainOutFile = baseDir+'workspace/trainMetrics.csv' ############################## PARAMETERS ############################### dataDir = baseDir+'data/' # Data directory params = {'NFFT':256, 'Fs':2000, 'noverlap':192} # Spectogram parameters maxTime = 60 # Number of time slice metrics ######################## BUILD A TrainData OBJECT ####################### train = fileio.TrainData(dataDir+'train.csv',dataDir+'train/') ##################### BUILD A TemplateManager OBJECT #################### tmplFile = baseDir+'moby/templateReduced.csv' tmpl = templateManager.TemplateManager(fileName=tmplFile, trainObj=train, params=params) ################## VERTICAL BARS FOR HIFREQ METRICS ##################### bar_ = np.zeros((12,9),dtype='Float32') bar1_ = np.zeros((12,12),dtype='Float32') bar2_ = np.zeros((12,6),dtype='Float32') bar_[:,3:6] = 1. bar1_[:,4:8] = 1. bar2_[:,2:4] = 1. ########################### CREATE THE HEADER ########################### outHdr = metrics.buildHeader(tmpl) ###################### LOOP THROUGH THE FILES ########################### hL = [] for i in range(train.numH1): P, freqs, bins = train.H1Sample(i,params=params) out = metrics.computeMetrics(P, tmpl, bins, maxTime) out += metrics.highFreqTemplate(P, bar_) out += metrics.highFreqTemplate(P, bar1_) out += metrics.highFreqTemplate(P, bar2_) hL.append([1, i] + out) for i in range(train.numH0): P, freqs, bins = train.H0Sample(i,params=params) out = metrics.computeMetrics(P, tmpl, bins, maxTime) out += metrics.highFreqTemplate(P, bar_) out += metrics.highFreqTemplate(P, bar1_) out += metrics.highFreqTemplate(P, bar2_) hL.append([0, i] + out) hL = np.array(hL) file = open(trainOutFile,'w') file.write("Truth,Index,"+outHdr+"\n") np.savetxt(file,hL,delimiter=',') file.close()
def makeMetrics(tmplFile,test=None,old=None,params={},testOutFile='out.csv'): """ Make the metrics """ maxTime = 60 # Number of time slice metrics ##################### BUILD A TemplateManager OBJECT #################### tmpl = templateManager.TemplateManager(fileName=tmplFile, trainObj=old, params=params) ########################### CREATE THE HEADER ########################### outHdr = metrics.buildHeader(tmpl) hL = [] ####################### LOOP THROUGH THE FILE ########################### for i in range(test.nTest): P, freqs, bins = test.TestSample(i,params=params) out = metrics.computeMetrics(P, tmpl, bins, maxTime) hL.append(out) hL = np.array(hL) ########################## WRITE TO FILE ################################ file = open(testOutFile,'w') file.write(outHdr+"\n") np.savetxt(file,hL,delimiter=',') file.close()
def main(): baseDir = globalConst.BASE_DIR ###################### SET OUTPUT FILE NAME HERE ######################## trainOutFile = baseDir+'workspace/trainMetrics.csv' ############################## PARAMETERS ############################### dataDir = baseDir+'data/' # Data directory templateDataDir = baseDir+'template_data/' # Data directory params = {'NFFT':256, 'Fs':2000, 'noverlap':192} # Spectogram parameters maxTime = 60 # Number of time slice metrics ######################## BUILD A TrainData OBJECT ####################### train = fileio.TrainData( dataDir+'train.csv',dataDir+'train/') templateTrain = fileio.TrainData(templateDataDir+'train.csv',templateDataDir+'train/') ##################### BUILD A TemplateManager OBJECT #################### tmplFile = baseDir+'moby/templateReduced.csv' tmpl = templateManager.TemplateManager(fileName=tmplFile, trainObj=templateTrain, params=params) ################## VERTICAL BARS FOR HIFREQ METRICS ##################### bar_ = np.zeros((12,9),dtype='Float32') bar1_ = np.zeros((12,12),dtype='Float32') bar2_ = np.zeros((12,6),dtype='Float32') bar_[:,3:6] = 1. bar1_[:,4:8] = 1. bar2_[:,2:4] = 1. ########################### CREATE THE HEADER ########################### outHdr = metrics.buildHeader(tmpl) ###################### LOOP THROUGH THE FILES ########################### hL = [] print "\nprocessing whale clips" for i in range(train.numH1): printStatus(i) clip_filename = train.h1[i] fid = fileID(clip_filename) P, freqs, bins = train.H1Sample(i,params=params) out = metrics.computeMetrics(P, tmpl, bins, maxTime) out += metrics.highFreqTemplate(P, bar_) out += metrics.highFreqTemplate(P, bar1_) out += metrics.highFreqTemplate(P, bar2_) #hL.append([1, i] + out) hL.append( (fid, [1,i]+out) ) # NOTE added fid for sorting below print "\nprocessing non-whale clips" for i in range(train.numH0): printStatus(i) clip_filename = train.h0[i] fid = fileID(clip_filename) P, freqs, bins = train.H0Sample(i,params=params) out = metrics.computeMetrics(P, tmpl, bins, maxTime) out += metrics.highFreqTemplate(P, bar_) out += metrics.highFreqTemplate(P, bar1_) out += metrics.highFreqTemplate(P, bar2_) #hL.append([0, i] + out) hL.append( (fid, [0,i]+out) ) # NOTE added fid for sorting below # NOTE Sort by fileID so metrics file lines are in # sequential order (train1.aiff, train2.aiff....) print "\nsorting metrics by fileID" hL_sort = np.array( [metric_lst for fid, metric_lst in sorted(hL)] ) print "writing metrics to:", trainOutFile file = open(trainOutFile,'w') file.write("Truth,Index,"+outHdr+"\n") np.savetxt(file,hL_sort,delimiter=',') file.close()