def eval_classifier(model, data_loader, args, writer=None, epoch=0):
    """Evaluate model on val/test data."""
    model.eval()
    #model.enable_all_grads()
    device = args.device
    kbar = pkbar.Kbar(target=len(data_loader), width=25)
    gt = []
    pred = []
    cam = GradCAM(
        model=model, target_layer=model.net.layer4[-1],
        use_cuda=True if torch.cuda.is_available() else False
    )
    for step, ex in enumerate(data_loader):
        images, _, emotions, _ = ex
        images = images.to(device)
        pred.append(torch.sigmoid(model(images)).detach().cpu().numpy())
        gt.append(emotions.cpu().numpy())
        kbar.update(step)
        # Log
        writer.add_image(
            'image_sample',
            back2color(unnormalize_imagenet_rgb(images[1], device)),
            epoch * len(data_loader) + step
        )
        for emo_id in torch.nonzero(emotions[1]).reshape(-1):
            grayscale_cam = cam(
                input_tensor=images[1:2],
                target_category=emo_id.item()
            )
            #grayscale_cam = grayscale_cam[0]
            '''
            writer.add_image(
                'gray_grad_cam_{}'.format(emo_id.item()),
                torch.from_numpy(np.uint8(255*grayscale_cam)).unsqueeze(0).repeat(3,1,1),
                epoch * len(data_loader) + step
            )
            '''
            heatmap = cv2.cvtColor(
                cv2.applyColorMap(np.uint8(255*grayscale_cam), cv2.COLORMAP_JET),
                cv2.COLOR_BGR2RGB
            )
            heatmap = torch.from_numpy(np.float32(heatmap) / 255).to(device)
            rgb_img = unnormalize_imagenet_rgb(images[1], device)
            rgb_cam_vis = heatmap.permute(2, 0, 1).contiguous() + rgb_img
            rgb_cam_vis = rgb_cam_vis / torch.max(rgb_cam_vis).item()
            writer.add_image(
                'image_grad_cam_{}'.format(emo_id.item()),
                back2color(rgb_cam_vis),
                epoch * len(data_loader) + step
            )
    AP = compute_ap(np.concatenate(gt), np.concatenate(pred))

    print(f"\nAccuracy: {np.mean(AP)}")
    print(AP)
    #model.zero_grad()
    #model.disable_all_grads()
    return np.mean(AP)
Esempio n. 2
0
def calculate_average_ap_on_batch(images, gt_boxes, gt_classes, gt_masks, pred_boxes, pred_classes, pred_classes_scores, pred_masks):
    mask_sum = 0
    box_sum = 0

    for i in range(len(images)):
        mask_ap, box_ap = metrics.compute_ap(gt_boxes[i], gt_classes[i], gt_masks[i], pred_boxes[i], pred_classes[i], pred_classes_scores[i], pred_masks[i])
        mask_sum += mask_ap
        box_sum += box_ap

    return mask_sum, box_sum
Esempio n. 3
0
def test(fasterrcnn_model):
    OutputStore.check_folder(OutputStore.dir_output_test_images)
    start_time = time.strftime('%Y/%m/%d %H:%M:%S')
    print("-" * 100)
    print(f"{start_time} Starting testing the model")

    class_data = ClassData()
    test_dataloader = PascalVOC2012Dataset.get_data_loader(
        Constants.dir_test_images, "test")
    fasterrcnn_model.eval()  # Set to eval mode for validation
    step = 0
    tot_MAP = 0
    for id, batch in enumerate(test_dataloader):
        _, X, img, img_file, y = batch
        step += 1
        if step % 100 == 0:
            curr_time = time.strftime('%Y/%m/%d %H:%M:%S')
            print(f"-- {curr_time} step: {step}")
        X, y['labels'], y['boxes'] = X.to(Constants.device), y['labels'].to(
            Constants.device), y['boxes'].to(Constants.device)
        img_file = img_file[0]
        img = np.squeeze(img)
        # list of images
        images = [im for im in X]
        targets = []
        lab = {
            'boxes': y['boxes'].squeeze_(0),
            'labels': y['labels'].squeeze_(0)
        }
        targets.append(lab)
        is_bb_degenerate = check_if_target_bbox_degenerate(targets)
        if is_bb_degenerate:
            continue  # Ignore images with degenerate bounding boxes
        # avoid empty objects
        if len(targets) == 0:
            continue

        # Get the predictions from the trained model
        predictions = fasterrcnn_model(images, targets)
        # predictions = predictions.to(Constants.model)
        # now compare the predictions with the ground truth values in the targets
        buffer = PredictionBuffer(targets, predictions)

        MAP, precisions, recalls, overlaps, gt_match, pred_match = compute_ap(
            buffer)
        class_data.add_matches(buffer, gt_match, pred_match)

        # MAP, precisions, recalls, overlaps = compute_ap(predictions, targets)
        tot_MAP += MAP
        output_annotated_images(predictions, img, img_file)
        output_stats_for_images(MAP, precisions, recalls, overlaps, img_file)

    class_results_dict = {}
    select_class_results_dict = {}

    print("Class level precision and recalls")
    print("---------------------------------")
    for i in range(Hyper.num_classes):
        class_name = Hyper.pascal_categories[i]
        class_gt_match = class_data.gt_match_dict[i]
        class_pred_match = class_data.pred_match_dict[i]
        if len(class_gt_match) > 0:
            MAP, precisions, recalls = compute_class_ap(
                class_gt_match, class_pred_match)
            print(f"MAP for {class_name}: {MAP}")
            class_results_dict[class_name] = ClassResultsBuffer(
                class_name, i, MAP, precisions, recalls)
            if class_name in Hyper.plot_categories:
                select_class_results_dict[class_name] = class_results_dict[
                    class_name]
            if MAP == 0:
                continue

            save_class_metrics(class_name, precisions, recalls)

    save_combined_class_metrics(select_class_results_dict)
    print("---------------------------------\n\n")
    ave_MAP = tot_MAP / step
    print(f"Average MAP = {ave_MAP}")
    print("*** Test run completed ***")
Esempio n. 4
0
def train(epoch=0):
    # convert list to dict
    pascal_voc_classes = {}

    for id, name in enumerate(Hyper.pascal_categories):
        pascal_voc_classes[name] = id

    pascal_voc_classes_name = {v: k for k, v in pascal_voc_classes.items()}

    print(pascal_voc_classes, Hyper.num_classes)
    # Modeling exercise: train fcn on Pascal VOC
    train_dataloader = PascalVOC2012Dataset.get_data_loader(
        Constants.dir_images, "train")
    val_dataloader = PascalVOC2012Dataset.get_data_loader(
        Constants.dir_val_images, "val")
    #####################################################################
    if Constants.load_model:
        fasterrcnn_model, fasterrcnn_optimizer = load_checkpoint(epoch)
    else:
        fasterrcnn_model, fasterrcnn_optimizer = get_model()

    print(fasterrcnn_model)
    start_time = time.strftime('%Y/%m/%d %H:%M:%S')
    print(f"{start_time} Starting epoch: {epoch}")
    total_steps = 0
    total_loss = 0
    length_dataloader = len(train_dataloader)
    loss_per_epoch = []
    ave_MAP_per_epoch = []
    for _ in range(Hyper.total_epochs):
        fasterrcnn_model.train()
        epoch += 1
        epoch_loss = 0
        print(f"Starting epoch: {epoch}")
        step = 0
        for id, batch in enumerate(train_dataloader):
            fasterrcnn_optimizer.zero_grad()
            _, X, y = batch
            total_steps += 1
            step += 1
            if step % 100 == 0:
                curr_time = time.strftime('%Y/%m/%d %H:%M:%S')
                print(
                    f"-- {curr_time} epoch: {epoch} step: {step} loss: {total_loss}"
                )

            X, y['labels'], y['boxes'] = X.to(
                Constants.device), y['labels'].to(
                    Constants.device), y['boxes'].to(Constants.device)
            # list of images
            images = [im for im in X]
            targets = []
            lab = {
                'boxes': y['boxes'].squeeze_(0),
                'labels': y['labels'].squeeze_(0)
            }
            # THIS IS IMPORTANT!!!!!
            # get rid of the first dimension (batch)
            # IF you have >1 images, make another loop
            # REPEAT: DO NOT USE BATCH DIMENSION
            targets.append(lab)
            is_bb_degenerate = check_if_target_bbox_degenerate(targets)
            if is_bb_degenerate:
                continue  # Ignore images with degenerate bounding boxes
            # avoid empty objects
            if len(targets) == 0:
                continue  # Ignore if no targets

            loss = fasterrcnn_model(images, targets)
            total_loss = 0
            for k in loss.keys():
                total_loss += loss[k]

            epoch_loss += total_loss.item()
            total_loss.backward()
            fasterrcnn_optimizer.step()
        epoch_loss = epoch_loss / length_dataloader
        loss_per_epoch.append(epoch_loss)
        print(f"Loss in epoch {epoch} = {epoch_loss}")
        if Constants.save_model:
            checkpoint = {
                "state_dict": fasterrcnn_model.state_dict(),
                "optimizer": fasterrcnn_optimizer.state_dict(),
                "epoch": epoch
            }
            save_checkpoint(checkpoint)

        fasterrcnn_model.eval()  # Set to eval mode for validation
        step = 0

        tot_MAP = 0
        for id, batch in enumerate(val_dataloader):
            _, X, y = batch
            step += 1
            X, y['labels'], y['boxes'] = X.to(
                Constants.device), y['labels'].to(
                    Constants.device), y['boxes'].to(Constants.device)
            # list of images
            images = [im for im in X]
            targets = []
            lab = {
                'boxes': y['boxes'].squeeze_(0),
                'labels': y['labels'].squeeze_(0)
            }
            targets.append(lab)
            is_bb_degenerate = check_if_target_bbox_degenerate(targets)
            if is_bb_degenerate:
                continue  # Ignore images with degenerate bounding boxes
            # avoid empty objects
            if len(targets) == 0:
                continue

            # Get the predictions from the trained model
            predictions = fasterrcnn_model(images, targets)
            buffer = PredictionBuffer(targets, predictions)
            # now compare the predictions with the ground truth values in the targets
            MAP, precisions, recalls, overlaps, gt_match, pred_match = compute_ap(
                buffer)
            #MAP, precisions, recalls, overlaps = compute_ap(predictions, targets)
            tot_MAP += MAP

        ave_MAP = tot_MAP / step
        ave_MAP_per_epoch.append(ave_MAP)
        print(f"Average MAP in epoch {epoch} = {ave_MAP} for {step} images")

    save_loss_per_epoch_chart(loss_per_epoch)
    save_ave_MAP_per_epoch_chart(ave_MAP_per_epoch)
    end_time = time.strftime('%Y/%m/%d %H:%M:%S')
    print(f"Training end time: {end_time}")
    return fasterrcnn_model
Esempio n. 5
0
 def test_ap(self):
     ranks, labels = self._gen_metric_data()
     res = metrics.compute_ap(ranks, labels)
     gt = ((2 / 3 + 1 / 2) / 2 + (1 + 2 / 3) / 2 + (1 + 1) / 2) / 3
     self.assertAllCloseAccordingToType(res['AP'], gt)