def extract_features_percentage(classifier, percentage, X, Y, extraction_type):
    tiempo_i = time.time()

    Errores = np.ones(10)
    Metrics = np.zeros((10, 5))
    j = 0
    kf = KFold(n_splits=10)
    clf = classifier

    ex = extract_features(extraction_type, int(X.shape[1] * percentage / 100))

    if (extraction_type == "pca"):
        ex = ex.fit(X)
    elif (extraction_type == "lda"):
        ex = ex.fit(X, Y.astype(int))

    X_ex = ex.transform(X)

    for train_index, test_index in kf.split(X_ex):

        X_train, X_test = X_ex[train_index], X_ex[test_index]
        y_train, y_test = Y[train_index], Y[test_index]

        model = clf.fit(X_train, y_train)

        y_pred = model.predict(X_test)

        Errores[j] = 1 - metrics(y_test, y_pred)[0]
        Metrics[j, :] = metrics(y_test, y_pred)
        j += 1

    print("\nError de validación aplicando " + str(extraction_type) + " at " +
          str(percentage) + "%: " + str(np.mean(Errores)) + "+/-" +
          str(np.std(Errores)))
    print("\nEficiencia en validación aplicando " + str(extraction_type) +
          " at " + str(percentage) + "%: " +
          str((1 - np.mean(Errores)) * 100) + "%")
    print("\nTiempo total de ejecución: " + str(time.time() - tiempo_i) +
          " segundos.")

    MetricsMean = meanMetrics(Metrics)
    MetricsStd = stdMetrics(Metrics)

    printMetrics(MetricsMean)
    print("\nDesviaciones Estandard")
    printMetrics(MetricsStd)

    return ex
Esempio n. 2
0
def select_features_filter_percentage(classifier, percentage, X, Y):
    tiempo_i = time.time()

    Errores = np.ones(10)
    Metrics = np.zeros((10, 5))
    j = 0
    kf = KFold(n_splits=10)

    filter_method = SelectPercentile(mutual_info_classif,
                                     percentile=percentage)

    filter_method.fit(X, Y)

    X_sf = filter_method.transform(X)

    for train_index, test_index in kf.split(X_sf):

        X_train, X_test = X_sf[train_index], X_sf[test_index]
        y_train, y_test = Y[train_index], Y[test_index]

        classifier.fit(X_train, y_train)
        y_pred = classifier.predict(X_test)

        Metrics[j, :] = metrics(y_test, y_pred)
        Errores[j] = 1 - metrics(y_test, y_pred)[0]
        j += 1

    print("\nError de validación aplicando at " + str(percentage) + "%: " +
          str(np.mean(Errores)) + "+/-" + str(np.std(Errores)))
    print("\nEficiencia en validación aplicando at " + str(percentage) +
          "%: " + str((1 - np.mean(Errores)) * 100) + "%")
    print("\nTiempo total de ejecución: " + str(time.time() - tiempo_i) +
          " segundos.")

    MetricsMean = meanMetrics(Metrics)
    MetricsStd = stdMetrics(Metrics)

    printMetrics(MetricsMean)
    print("\nDesviaciones Estandard")
    printMetrics(MetricsStd)

    return filter_method
Esempio n. 3
0
def select_features_number(classifier, number_features, fwd, fltg, X, Y):
    tiempo_i = time.time()

    Errores = np.ones(10)
    Metrics = np.zeros((10, 5))
    j = 0
    kf = KFold(n_splits=10)
    clf = classifier

    sf = select_features(clf, number_features, fwd, fltg)

    sf = sf.fit(X, Y)

    X_sf = sf.transform(X)

    for train_index, test_index in kf.split(X_sf):

        X_train, X_test = X_sf[train_index], X_sf[test_index]
        y_train, y_test = Y[train_index], Y[test_index]

        classifier.fit(X_train, y_train)
        y_pred = classifier.predict(X_test)

        Errores[j] = 1 - metrics(y_test, y_pred)[0]
        Metrics[j, :] = metrics(y_test, y_pred)
        j += 1

    print("\nError de validación aplicando SFS: " + str(np.mean(Errores)) +
          "+/-" + str(np.std(Errores)))
    print("\nEficiencia en validación aplicando SFS: " +
          str((1 - np.mean(Errores)) * 100) + "%")
    print("\nTiempo total de ejecución: " + str(time.time() - tiempo_i) +
          " segundos.")

    MetricsMean = meanMetrics(Metrics)
    MetricsStd = stdMetrics(Metrics)

    printMetrics(MetricsMean)
    print("\nDesviaciones Estandard")
    printMetrics(MetricsStd)

    return sf
    exactitud = np.zeros((num_splits, 5))
    iteration = 0

    for train_index, test_index in kf.split(x):
        X_train, X_test = x[train_index], x[test_index]
        y_train, y_test = y[train_index], y[test_index]

        clf.fit(X_train, y_train)

        y_pred = clf.predict(X_test)

        exactitud[iteration, :] = metrics(y_test, y_pred)
        iteration += 1

    error_standard = stdMetrics(error_promedio)
    error_promedio = meanMetrics(error_promedio)

    print('Error para C=', c)
    printMetrics(error_promedio)
    print('Desviación estandar')
    print('###################################')
    printMetrics(error_standard)

    error_by_parameter[i, :] = error_promedio
    i += 1

elapsed_time = time.time() - start
print('Elapsed time for one neuron Classification: ', elapsed_time)

plt.plot(C, error_by_parameter[:, 0], 'b--')
        X_train, X_test = x[train_index], x[test_index]
        y_train, y_test = y[train_index], y[test_index]

        clf.fit(X_train,y_train)

        y_pred = clf.predict(X_test)

        error_promedio[iteration, :] = metrics(y_test, y_pred)
        iteration += 1

    error_desviacion = stdMetrics(error_promedio)
    error_promedio = meanMetrics(error_promedio)

    print('Error para', B, ' forest: ')
    print('###########################################')
    printMetrics(error_promedio)
    print('Desviación estandar')
    print('##########################################')
    printMetrics(error_desviacion)

    np.savetxt(saveFile, error_promedio)

    error_by_B[i, :]=error_promedio
    i+=1

saveFile.close()
elapsed_time = time.time()-start
print('Elapsed time for one neuron Classification: ',elapsed_time)

plt.plot(range(10,51,10), error_by_B[:, 0], 'b--')
plt.xlabel('Numero de Arboles')
Esempio n. 6
0
                                             "fossdriverrc.json")
            fdServer = fossdriverSetup(fossdriverrc_path)
            if not fdServer:
                print(f"Unable to connect to Fossology server with fossdriver")
                sys.exit(1)
            all_metrics = getMetrics(cfg, fdServer)

            metricsFilename = os.path.join(cfg._storepath, cfg._month,
                                           "metrics.json")
            saveMetrics(metricsFilename, all_metrics)

        elif command == "printmetrics":
            ran_command = True
            metricsFilename = os.path.join(cfg._storepath, cfg._month,
                                           "metrics.json")
            printMetrics(metricsFilename)

        elif command == "transfer":
            ran_command = True

            # set up fossdriver server connections
            old_fossdriverrc_path = os.path.join(str(Path.home()),
                                                 ".fossdriver",
                                                 "fossdriverrc.json")
            old_server = fossdriverSetup(old_fossdriverrc_path)
            if not old_server:
                print(
                    f"Unable to connect to old Fossology server with fossdriver"
                )
                sys.exit(1)
            new_fossdriverrc_path = os.path.join(str(Path.home()),
Esempio n. 7
0
kf = KFold(n_splits=num_splits)
kf.get_n_splits(x)

model.compile(optimizer='adam',
              loss='binary_crossentropy',
              metrics=["accuracy"])

exactitud = np.zeros((num_splits, 5))
iteration = 0

start = time.time()

for train_index, test_index in kf.split(x):
    X_train, X_test = x[train_index], x[test_index]
    y_train, y_test = y[train_index], y[test_index]
    model.fit(X_train, y_train, batch_size=100, epochs=5)

    y_pred = model.predict_classes(X_test)

    exactitud[iteration, :] = metrics(y_test, y_pred)
    iteration += 1

elapsed_time = time.time() - start

mean_metrics = meanMetrics(exactitud)
std_metrics = stdMetrics(exactitud)
printMetrics(mean_metrics)
print('Desviación estandar')
print('########################################')
printMetrics(std_metrics)