def evaluate_icp(args, test_loader): dura = [] t_errors, R_errors, degree_errors = [], [], [] for i, (ref_cloud, src_cloud, gtR, gtt) in tqdm(enumerate(test_loader)): if args.cuda: ref_cloud, src_cloud, gtR, gtt = ref_cloud.cuda(), src_cloud.cuda(), \ gtR.cuda(), gtt.cuda() ref_cloud = torch.squeeze(ref_cloud).cpu().numpy() src_cloud = torch.squeeze(src_cloud).cpu().numpy() tic = time.time() R, t, pred_ref_cloud = icp(npy2pcd(src_cloud), npy2pcd(ref_cloud)) toc = time.time() R = torch.from_numpy(np.expand_dims(R, 0)).to(gtR) t = torch.from_numpy(np.expand_dims(t, 0)).to(gtt) dura.append(toc - tic) cur_t_error = translation_error(t, -gtt) cur_R_error = rotation_error(R, gtR.permute(0, 2, 1).contiguous()) cur_degree_error = degree_error(R, gtR.permute(0, 2, 1).contiguous()) t_errors.append(cur_t_error.item()) R_errors.append(cur_R_error.item()) degree_errors.append(cur_degree_error.item()) if args.show: print(cur_t_error.item(), cur_R_error.item(), cur_degree_error.item()) pcd1 = npy2pcd(ref_cloud, 0) pcd2 = npy2pcd(src_cloud, 1) pcd3 = pred_ref_cloud o3d.visualization.draw_geometries([pcd1, pcd2, pcd3]) return dura, np.mean(t_errors), np.mean(R_errors), np.mean(degree_errors)
def evaluate_benchmark(args, test_loader): model = IterativeBenchmark(in_dim1=args.in_dim, niters=args.niters) if args.cuda: model = model.cuda() model.load_state_dict(torch.load(args.checkpoint)) else: model.load_state_dict( torch.load(args.checkpoint, map_location=torch.device('cpu'))) model.eval() dura = [] t_errors, R_errors, degree_errors = [], [], [] with torch.no_grad(): for i, (ref_cloud, src_cloud, gtR, gtt) in tqdm(enumerate(test_loader)): if args.cuda: ref_cloud, src_cloud, gtR, gtt = ref_cloud.cuda(), src_cloud.cuda(), \ gtR.cuda(), gtt.cuda() tic = time.time() R, t, pred_ref_cloud = model( src_cloud.permute(0, 2, 1).contiguous(), ref_cloud.permute(0, 2, 1).contiguous()) toc = time.time() dura.append(toc - tic) cur_t_error = translation_error(t, -gtt) cur_R_error = rotation_error(R, gtR.permute(0, 2, 1).contiguous()) cur_degree_error = degree_error(R, gtR.permute(0, 2, 1).contiguous()) t_errors.append(cur_t_error.item()) R_errors.append(cur_R_error.item()) degree_errors.append(cur_degree_error.item()) if args.show: print(cur_t_error.item(), cur_R_error.item(), cur_degree_error.item()) ref_cloud = torch.squeeze(ref_cloud).cpu().numpy() src_cloud = torch.squeeze(src_cloud).cpu().numpy() pred_ref_cloud = torch.squeeze(pred_ref_cloud).cpu().numpy() pcd1 = npy2pcd(ref_cloud, 0) pcd2 = npy2pcd(src_cloud, 1) pcd3 = npy2pcd(pred_ref_cloud, 2) o3d.visualization.draw_geometries([pcd1, pcd2, pcd3]) return dura, np.mean(t_errors), np.mean(R_errors), np.mean(degree_errors)
def test_one_epoch(test_loader, model, loss_fn): model.eval() losses, t_errors, R_errors, degree_errors = [], [], [], [] with torch.no_grad(): for ref_cloud, src_cloud, gtR, gtt in tqdm(test_loader): ref_cloud, src_cloud, gtR, gtt = ref_cloud.cuda(), src_cloud.cuda(), \ gtR.cuda(), gtt.cuda() R, t, pred_ref_cloud = model( src_cloud.permute(0, 2, 1).contiguous(), ref_cloud.permute(0, 2, 1).contiguous()) loss = loss_fn(ref_cloud, pred_ref_cloud) cur_t_error = translation_error(t, -gtt) cur_R_error = rotation_error(R, gtR.permute(0, 2, 1).contiguous()) cur_degree_error = degree_error(R, gtR.permute(0, 2, 1).contiguous()) losses.append(loss.item()) t_errors.append(cur_t_error.item()) R_errors.append(cur_R_error.item()) degree_errors.append(cur_degree_error.item()) model.train() return np.mean(losses), np.mean(t_errors), np.mean(R_errors), np.mean( degree_errors)
def train_one_epoch(train_loader, model, loss_fn, optimizer): losses, t_errors, R_errors, degree_errors = [], [], [], [] for ref_cloud, src_cloud, gtR, gtt in tqdm(train_loader): ref_cloud, src_cloud, gtR, gtt = ref_cloud.cuda(), src_cloud.cuda(), \ gtR.cuda(), gtt.cuda() optimizer.zero_grad() R, t, pred_ref_cloud = model( src_cloud.permute(0, 2, 1).contiguous(), ref_cloud.permute(0, 2, 1).contiguous()) loss = loss_fn(ref_cloud, pred_ref_cloud) loss.backward() optimizer.step() cur_t_error = translation_error(t, -gtt) cur_R_error = rotation_error(R, gtR.permute(0, 2, 1).contiguous()) cur_degree_error = degree_error(R, gtR.permute(0, 2, 1).contiguous()) losses.append(loss.item()) t_errors.append(cur_t_error.item()) R_errors.append(cur_R_error.item()) degree_errors.append(cur_degree_error.item()) return np.mean(losses), np.mean(t_errors), np.mean(R_errors), np.mean( degree_errors)