def args_syn_wn(self, lemmas_t, lemmas_h, score, id, type): result = 0 wn = WNTools() tool = RTETools() tool.set_tokens(lemmas_t.split()) tool.quit_punct() lemmas_t = tool.quit_sw() tool.set_tokens(lemmas_h.split()) tool.quit_punct() lemmas_h = tool.quit_sw() (diff_ht, diff_th) = self.diff(lemmas_t, lemmas_h) expand_diff_ht = wn.expand_bow_syns(list(diff_ht)) expand_diff_th = wn.expand_bow_syns(list(diff_th)) if len(expand_diff_ht) != 0 and len(expand_diff_th) !=0: sim = SetMetrics(expand_diff_ht, expand_diff_th) if sim.cosine() > 0: result = 1 else: result = 1 predicate = 'ArgRelSyn(%s, %s, %s)'%(id, type, result) return predicate
def args_syn_wn(self, lemmas_t, lemmas_h, score, id, type): result = 0 wn = WNTools() tool = RTETools() tool.set_tokens(lemmas_t.split()) tool.quit_punct() lemmas_t = tool.quit_sw() tool.set_tokens(lemmas_h.split()) tool.quit_punct() lemmas_h = tool.quit_sw() (diff_ht, diff_th) = self.diff(lemmas_t, lemmas_h) expand_diff_ht = wn.expand_bow_syns(list(diff_ht)) expand_diff_th = wn.expand_bow_syns(list(diff_th)) if len(expand_diff_ht) != 0 and len(expand_diff_th) !=0: sim = SetMetrics(expand_diff_ht, expand_diff_th) if sim.cosine() > 0: result = 1 else: result = 1 predicate = '>arg_relsyn\n%s %s %s'%(id, type, result) return predicate
def extractFeatures(options): with open(options.pickle_file, 'r') as pf: pairs = pickle.load(pf) metrics = SetMetrics() tool = RTETools() feature_values = {} i = 0 o = open(options.output_file, 'w') for pair in pairs: id = pair.get_id() value = pair.get_value() lemmas_text = pair.get_feature_text('lemmas') lemmas_hypo = pair.get_feature_hypo('lemmas') tool.set_tokens(lemmas_text) lemmas_text = tool.quit_sw() lemmas_text = tool.quit_punct() pos_text = pair.get_feature_text('pos') pos_hypo = pair.get_feature_hypo('pos') tool.set_tokens(lemmas_hypo) lemmas_hypo = tool.quit_sw() lemmas_hypo = tool.quit_punct() metrics.set_text(lemmas_text) metrics.set_hypo(lemmas_hypo) cos = metrics.cosine() print >> o, '>>' i = 0 for lemma_text in lemmas_text: print >> o, '>word_t' print >> o, '%s %s "%s"' % (id, i, lemma_text) i += 1 i = 0 for lemma_hypo in lemmas_hypo: print >> o, '>word_h' print >> o, '%s %s "%s"' % (id, i, lemma_hypo) i += 1 i = 0 for l, pos_text in pos_text: print >> o, '>pos_t' print >> o, '%s %s "%s"' % (id, i, pos_text) i += 1 i = 0 for l, pos_hypo in pos_hypo: print >> o, '>pos_h' print >> o, '%s %s "%s"' % (id, i, pos_hypo) i += 1 print >> o, '>cosine' print >> o, '%s %s' % (id, cos) print >> o, '>entailment' print >> o, '%s "%s"\n' % (id, value)
def extractFeatures(options): with open(options.pickle_file, 'r') as pf: pairs = pickle.load(pf) metrics = SetMetrics() tool = RTETools() feature_values = {} i = 0 o = open(options.output_file, 'w') for pair in pairs: id = pair.get_id() value = pair.get_value() lemmas_text = pair.get_feature_text('lemmas') lemmas_hypo = pair.get_feature_hypo('lemmas') tool.set_tokens(lemmas_text) lemmas_text = tool.quit_sw() lemmas_text = tool.quit_punct() pos_text = pair.get_feature_text('pos') pos_hypo = pair.get_feature_hypo('pos') tool.set_tokens(lemmas_hypo) lemmas_hypo = tool.quit_sw() lemmas_hypo = tool.quit_punct() metrics.set_text(lemmas_text) metrics.set_hypo(lemmas_hypo) cos = metrics.cosine() print >>o, '>>' i = 0 for lemma_text in lemmas_text: print >>o, '>word_t' print >>o, '%s %s "%s"'%(id, i, lemma_text) i += 1 i = 0 for lemma_hypo in lemmas_hypo: print >>o, '>word_h' print >>o, '%s %s "%s"'%(id, i, lemma_hypo) i += 1 i = 0 for l,pos_text in pos_text: print >>o, '>pos_t' print >>o, '%s %s "%s"'%(id, i, pos_text) i += 1 i = 0 for l,pos_hypo in pos_hypo: print >>o, '>pos_h' print >>o, '%s %s "%s"'%(id, i, pos_hypo) i += 1 print >>o, '>cosine' print >>o, '%s %s'%(id, cos) print >>o, '>entailment' print >>o, '%s "%s"\n'%(id, value)
def baseline(self, id_bo): self.baseline_predicates = [] lin = Lin() tools = RTETools() if id_bo in self.pairs: value = self.pairs[id_bo].get_value() lemmas_text = self.pairs[id_bo].get_feature_text('lemmas') tools.set_tokens(lemmas_text) lemmas_text = tools.quit_sw() lemmas_text = tools.quit_punct() lemmas_hypo = self.pairs[id_bo].get_feature_hypo('lemmas') tools.set_tokens(lemmas_hypo) lemmas_hypo = tools.quit_sw() lemmas_hypo = tools.quit_punct() for lemma_t in lemmas_text: for lemma_h in lemmas_hypo: combo1 = 'Combo(%s, "%s|||%s")'%(id_bo, self.clean_str(lemma_t), self.clean_str(lemma_h)) sim_t = lin.n_similar_words(lemma_t, 10) sim_h = lin.n_similar_words(lemma_h, 10) tmp_score_t = [] for w,s in sim_t: tmp_score_t.append(w) tmp_score_h = [] for w,s in sim_h: tmp_score_h.append(w) vector = SetMetrics(tmp_score_t, tmp_score_h) cos = vector.cosine() combo2 = 'ComboLin(%s, %s)'%(id_bo, cos) wordcpm = NounTools(lemma_t, lemma_h) direct = wordcpm.direct() combo3 = 'Direct(%s, %s)'%(id_bo, direct) self.baseline_predicates.append(combo1) #self.baseline_predicates.append(combo2) self.baseline_predicates.append(combo3) return self.baseline_predicates
def main(args): pickle_file = args[0] print 'loading file:',pickle_file with open(pickle_file, 'r') as pf: pairs = pickle.load(pf) k = 0 for pair in pairs: print 'id:', pair.get_id() print 's1:', pair.get_text() print 's2:', pair.get_hypo() print 'features:', pair.get_features_text_type() print 'set-metrics, cos test' lemmas_text = pair.get_feature_text('lemmas') lemmas_hypo = pair.get_feature_hypo('lemmas') set_th = SetMetrics(lemmas_text, lemmas_hypo) cos = set_th.cosine() #print cos print 'SRL tools' frames_text = pair.get_feature_text('frames') print frames_text print '################' srl = SRLTools(lemmas_text, frames_text) word_to_frame = srl.get_words_frame() print word_to_frame print '################' print srl.get_verbs() print '################' #print 'verb-metrics, ' pos_text = pair.get_feature_text('pos') pos_hypo = pair.get_feature_hypo('pos') verbs = VerbMetrics() lin = Lin() vectors = VectorMetrics() hyper = WNTools() for i, pos_tuple_t in enumerate(pos_text): (token, pos_t) = pos_tuple_t if pos_t.startswith('V'): for j, pos_tuple_h in enumerate(pos_hypo): (token, pos_h) = pos_tuple_h if pos_h.startswith('V'): verbs.set_text_verb(lemmas_text[i]) verbs.set_hypo_verb(lemmas_hypo[j]) #print 'verbs test t:%s h:%s'%(lemmas_text[i], lemmas_hypo[j]) vn_isec = verbs.vn_isec() #print 'verb net isec: %d'%vn_isec #print 'lin(%s):'%lemmas_text[i], '\n', lin.n_similar_words(lemmas_text[i]) #print 'lin(%s):'%lemmas_hypo[j], '\n', lin.n_similar_words(lemmas_hypo[j]) t_sim = lin.n_similar_words(lemmas_text[i]) h_sim = lin.n_similar_words(lemmas_hypo[j]) t_score = [float(score) for word,score in t_sim] h_score = [float(score) for word,score in h_sim] vectors.set_vectors(t_score, h_score) #print 'cos_vect: ', vectors.cosine() elif pos_h.startswith('N'): #print 'wn test hypernyms' trees = hyper.get_mfs_hypernyms((lemmas_hypo[j], pos_h)) #print trees k += 1 if k >= 10: break pf.close return
class TineVN: def __init__(self, frames_text = {}, tokens_text = [], frames_hypo = {}, tokens_hypo = [], sim_type = 'Lin', verbose = 1): self.srl_t = SRLTools() self.srl_h = SRLTools() self.verb_net = VerbMetrics() self.arg_sim = SetMetrics() self.lin = Lin() self.wn = WNTools() self.frames_hypo = frames_text self.frames_text = frames_hypo self.tokens_hypo = tokens_hypo self.tokens_text = tokens_text self.args_text = {} self.args_hypo = {} self.verbs_text = [] self.verbs_hypo = [] self.tine_score = 0 self.verb_score = 0 self.arg_score = 0 self.sim_type = sim_type self.verbose = verbose #self.pos_text = pos_text #self.pos_hypo = pos_hypo return def get_tine_score(self, frames_text = {}, tokens_text = [], frames_hypo = {}, tokens_hypo = []): if frames_text: self.frames_text = frames_text if frames_hypo: self.frames_hypo = frames_hypo if tokens_text: self.tokens_text = tokens_text if tokens_hypo: self.tokens_hypo = tokens_hypo self.srl_t.set_frames(self.frames_text) self.srl_h.set_frames(self.frames_hypo) self.srl_t.set_tokens(self.tokens_text) self.srl_h.set_tokens(self.tokens_hypo) self.args_text = self.srl_t.get_words_frame() self.args_hypo = self.srl_h.get_words_frame() sum_verb = 0 num_verbs_h = len(self.args_text.keys()) self.__p_stderr('TINE VerbNet\n') self.__p_stderr('T: %s \n H: %s\n'%(self.args_text, self.args_hypo)) self.__p_stderr('T: %s \n H: %s\n'%(self.args_text.keys(), self.args_hypo.keys())) for verb_t, args_t in self.args_text.items(): for verb_h, args_h in self.args_hypo.items(): sim_verbs = self.__simVerbs(verb_t, verb_h) if sim_verbs == 1: self.__p_stderr('verbs(%s, %s)\n'%(verb_t, verb_h)) args_score = self.__simArgs(args_t, args_h) sum_verb += args_score self.tine_score = float(sum_verb) / num_verbs_h self.__p_stderr('score:%s\n'%(self.tine_score)) return self.tine_score def __simVerbs(self, verb_t = '', verb_h = ''): if verb_t == verb_h: return 1 self.verb_net.set_text_verb(verb_t) self.verb_net.set_hypo_verb(verb_h) isec = self.verb_net.vn_isec() if isec == 0: vo = self.verb_net.vo() return vo else: return isec return isec def __simArgs(self, args_t = [], args_h = []): sum_args = 0 num_args_h = len(args_h) for tag_t, tokens_t in args_t: for tag_h, tokens_h in args_h: if tag_t == tag_h: expand_t = [] expand_h = [] if self.sim_type == 'Lin': expand_t = self.lin.expand_bow(tokens_t) expand_h = self.lin.expand_bow(tokens_h) elif self.sim_type == 'WN': expand_t = self.wn.expand_bow_tree(tokens_t) expand_h = self.wn.expand_bow_tree(tokens_h) self.arg_sim.set_text(expand_t) self.arg_sim.set_hypo(expand_h) self.arg_score = self.arg_sim.cosine() self.__p_stderr('\t[%s|%s] %s %s\n'%(tag_t, self.arg_score, expand_t, expand_h)) sum_args += self.arg_score if num_args_h == 0: return 0 else: self.verb_score = float(sum_args) / num_args_h return self.verb_score def __p_stderr(self, text = ''): if self.verbose == 1: sys.stderr.write(text) return def get_verb_score(self): return self.verb_score def get_arg_score(self): return self.arg_score
def extractFeatures(options): with open(options.pickle_file, 'r') as pf: pairs = pickle.load(pf) metrics = SetMetrics() meteor_h = [] meteor_t = [] feature_values = {} i = 0 if options.sim_type: tine = TineVN(sim_type = options.sim_type) else: tine = TineVN() ne = NEMetrics() ed = Edistance(verbose = 0) for pair in pairs: id = pair.get_id() value = pair.get_value() lemmas_text = pair.get_feature_text('lemmas') lemmas_hypo = pair.get_feature_hypo('lemmas') frames_text = pair.get_feature_text('frames') frames_hypo = pair.get_feature_hypo('frames') ne_text = pair.get_feature_text('ne') ne_hypo = pair.get_feature_hypo('ne') pos_text = pair.get_feature_text('pos') pos_hypo = pair.get_feature_hypo('pos') chunk_text = pair.get_feature_text('chunks') chunk_hypo = pair.get_feature_hypo('chunks') tokens_text = [] tokens_hypo = [] if options.sim_type == 'WordNet': tokens_text = toWN(lemmas_text, pos_text) tokens_hypo = toWN(lemmas_hypo, pos_hypo) elif options.sim_type == 'Lin': tokens_text = lemmas_text tokens_hypo = lemmas_hypo metrics.set_text(lemmas_text) metrics.set_hypo(lemmas_hypo) ne.set_pairs_text(ne_text) ne.set_pairs_hypo(ne_hypo) ne_score = ne.get_score_lin() cos = metrics.cosine() rec = metrics.get_recall() prec = metrics.get_precision() f1 = metrics.get_f1() bleu = metrics.bleu() meteor_t.append((id, lemmas_text)) meteor_h.append((id, lemmas_hypo)) tine_score = tine.get_tine_score(frames_text, tokens_text, frames_hypo, tokens_hypo) ed_score = ed.get_edistance_micai(frames_text, tokens_text, chunk_text, frames_hypo, tokens_hypo, chunk_hypo, entailment = value) feature_values.setdefault(id, {}) feature_values[id]['cos'] = cos feature_values[id]['f1'] = f1 feature_values[id]['rec'] = rec feature_values[id]['prec'] = prec feature_values[id]['bleu'] = bleu feature_values[id]['value'] = value feature_values[id]['tine'] = tine_score feature_values[id]['ne'] = ne_score feature_values[id]['ed'] = ed_score #if tine_score == 0: # i += 1 feature_values = addMeteor(feature_values, metrics, meteor_h, meteor_t) dumpFeatures(feature_values, options.output_file, options.out_type)