Esempio n. 1
0
def test_visdef_object():
    vd = Visdef(
        "msymb",
        {
            "symbol_type": "text",
            "symbol_table_mode": "advanced",
            "symbol_advanced_table_text_font_colour": "black",
        },
    )

    # clone
    v = vd.clone()
    assert v.verb == vd.verb
    assert v.params == vd.params
    assert id(v) != id(vd)
    assert id(v.params) != id(vd.params)

    # change
    vd.change("msymb", "symbol_advanced_table_text_font_colour", "red")
    assert vd.params["symbol_advanced_table_text_font_colour"] == "red"
    vd.change("mcont", "symbol_advanced_table_text_font_colour", "blue")
    assert vd.params["symbol_advanced_table_text_font_colour"] == "red"

    # from request
    r = mv.msymb({
        "symbol_type": "text",
        "symbol_table_mode": "advanced",
        "symbol_advanced_table_text_font_colour": "black",
    })

    v = Visdef.from_request(r)
    assert v.verb == vd.verb
    for k, v in v.params.items():
        assert r[k.upper()].lower() == v.lower()
def plot_obs_freq(predictor_matrix, code):
    coastline = mv.mcoast(map_coastline_thickness=2,
                          map_boundaries="on",
                          map_coastline_colour="chestnut")
    symbol = mv.msymb(
        legend="on",
        symbol_type="marker",
        symbol_table_mode="on",
        symbol_outline="on",
        symbol_min_table=[1, 2, 5, 10, 15, 20, 25, 30],
        symbol_max_table=[2, 5, 10, 15, 20, 25, 30, 100000],
        symbol_colour_table=[
            "RGB(0.7020,0.7020,0.7020)",
            "RGB(0.4039,0.4039,0.4039)",
            "blue",
            "RGB(0.4980,1.0000,0.0000)",
            "RGB(1.0000,0.8549,0.0000)",
            "orange",
            "red",
            "magenta",
        ],
        symbol_marker_table=15,
        symbol_height_table=0.3,
    )

    legend = mv.mlegend(
        legend_text_font="arial",
        legend_text_font_size=0.35,
        legend_entry_plot_direction="row",
        legend_box_blanking="on",
        legend_entry_text_width=50,
    )

    title = mv.mtext(
        text_line_count=4,
        text_line_1=
        "OBS Frequency",  # To sostitute with "FE" values when relevant.
        text_line_2=f"WT Code = {code}",
        text_line_4=" ",
        text_font="arial",
        text_font_size=0.4,
    )

    df = predictor_matrix[["LonOBS", "LatOBS", "OBS"]]
    grouped_df = df.groupby(["LatOBS", "LonOBS"], as_index=False).count()

    geo = mv.create_geo(len(grouped_df), "xyv")
    geo = mv.set_latitudes(geo, grouped_df["LatOBS"].to_numpy(dtype=np.float))
    geo = mv.set_longitudes(geo, grouped_df["LonOBS"].to_numpy(dtype=np.float))
    geo = mv.set_values(geo, grouped_df["OBS"].to_numpy(dtype=np.float))

    with NamedTemporaryFile(delete=False, suffix=".pdf") as pdf:
        pdf_obj = mv.pdf_output(output_name=pdf.name.replace(".pdf", ""))
        mv.setoutput(pdf_obj)

        mv.plot(coastline, symbol, legend, title, geo)
        return pdf.name
def plot_std(predictor_matrix, code):
    coastline = mv.mcoast(map_coastline_thickness=2,
                          map_boundaries="on",
                          map_coastline_colour="chestnut")

    symbol = mv.msymb(
        legend="on",
        symbol_type="marker",
        symbol_table_mode="on",
        symbol_outline="on",
        symbol_min_table=[0, 0.0001, 0.5, 1, 2, 5],
        symbol_max_table=[0.0001, 0.5, 1, 2, 5, 1000],
        symbol_colour_table=[
            "RGB(0.7020,0.7020,0.7020)",
            "RGB(0.2973,0.2973,0.9498)",
            "RGB(0.1521,0.6558,0.5970)",
            "RGB(1.0000,0.6902,0.0000)",
            "red",
            "RGB(1.0000,0.0000,1.0000)",
        ],
        symbol_marker_table=15,
        symbol_height_table=0.3,
    )

    legend = mv.mlegend(
        legend_text_font="arial",
        legend_text_font_size=0.35,
        legend_entry_plot_direction="row",
        legend_box_blanking="on",
        legend_entry_text_width=50,
    )

    error = "FER" if "FER" in predictor_matrix.columns else "FE"

    title = mv.mtext(
        text_line_count=4,
        text_line_1=f"{error} Standard Deviation",
        text_line_2=f"WT Code = {code}",
        text_line_4=" ",
        text_font="arial",
        text_font_size=0.4,
    )

    df = predictor_matrix[["LonOBS", "LatOBS", error]]
    grouped_df = df.groupby(["LatOBS", "LonOBS"])[error].mean().reset_index()

    geo = mv.create_geo(len(grouped_df), "xyv")
    geo = mv.set_latitudes(geo, grouped_df["LatOBS"].to_numpy(dtype=np.float))
    geo = mv.set_longitudes(geo, grouped_df["LonOBS"].to_numpy(dtype=np.float))
    geo = mv.set_values(geo, grouped_df[error].to_numpy(dtype=np.float))

    with NamedTemporaryFile(delete=False, suffix=".pdf") as pdf:
        pdf_obj = mv.pdf_output(output_name=pdf.name.replace(".pdf", ""))
        mv.setoutput(pdf_obj)

        mv.plot(coastline, symbol, legend, title, geo)
        return pdf.name
def plot_avg(predictor_matrix, code):
    coastline = mv.mcoast(map_coastline_thickness=2,
                          map_boundaries="on",
                          map_coastline_colour="chestnut")

    symbol = mv.msymb(
        legend="on",
        symbol_type="marker",
        symbol_table_mode="on",
        symbol_outline="on",
        symbol_min_table=[-1, -0.25, 0.25, 2],
        symbol_max_table=[-0.025, 0.25, 2, 1000],
        symbol_colour_table=[
            "RGB(0.0000,0.5490,0.1882)",
            "black",
            "RGB(1.0000,0.6902,0.0000)",
            "red",
        ],
        symbol_marker_table=15,
        symbol_height_table=0.3,
    )

    legend = mv.mlegend(
        legend_text_font="arial",
        legend_text_font_size=0.35,
        legend_entry_plot_direction="row",
        legend_box_blanking="on",
        legend_entry_text_width=50,
    )

    error = "FER" if "FER" in predictor_matrix.columns else "FE"

    title = mv.mtext(
        text_line_count=4,
        text_line_1=f"{error} Mean",
        text_line_2=f"WT Code = {code}",
        text_line_4=" ",
        text_font="arial",
        text_font_size=0.4,
    )

    df = predictor_matrix[["LonOBS", "LatOBS", error]]
    grouped_df = df.groupby(["LatOBS", "LonOBS"])[error].mean().reset_index()

    geo = mv.create_geo(len(grouped_df), "xyv")
    geo = mv.set_latitudes(geo, grouped_df["LatOBS"].to_numpy(dtype=np.float))
    geo = mv.set_longitudes(geo, grouped_df["LonOBS"].to_numpy(dtype=np.float))
    geo = mv.set_values(geo, grouped_df[error].to_numpy(dtype=np.float))

    return plot_geo(geo, coastline, symbol, legend, title)
Esempio n. 5
0
def test_definitions():
    mcont_def = mv.mcont({'legend': True})
    msymb_def = mv.msymb({'symbol_type': 'marker'})
    mcoast_def = mv.mcoast({'map_coastline_land_shade': True})
    mobs_def = mv.mobs({'obs_temperature': False})
    mtext_def = mv.mtext({'text_font_size': '0.80'})
    geoview_def = mv.geoview({'map_projection': 'polar_stereographic'})
    ps_output_def = mv.ps_output({'output_name': 'test'})
    assert mcont_def['LEGEND'] == 'ON'
    assert msymb_def['SYMBOL_TYPE'] == 'MARKER'
    assert mcoast_def['MAP_COASTLINE_LAND_SHADE'] == 'ON'
    assert mobs_def['OBS_TEMPERATURE'] == 'OFF'
    assert mtext_def['TEXT_FONT_SIZE'] == 0.8
    assert geoview_def['MAP_PROJECTION'] == 'POLAR_STEREOGRAPHIC'
    assert ps_output_def['OUTPUT_NAME'] == 'test'
Esempio n. 6
0
obs_plotting = mv.mobs(
    obs_temperature=False,
    obs_cloud=False,
    obs_low_cloud=False,
    obs_dewpoint_colour="purple",
)

mv.setoutput(mv.png_output(output_width=1200, output_name="./obsplot2"))
mv.plot(area_view, obs, obs_plotting)

# ALTERNATIVELY, if we don't want to plot the whole observations, but instead want to
# extract a specific parameter from the BUFR messages, then we use the Observation Filter
# as shown here:

# dewpoint_t is a 'geopoints' variable
dewpoint_t = mv.obsfilter(output="geopoints", parameter="012006", data=obs)

# add an optional Symbol Plotting definition to get nice coloured circles
# at each point
symb_visdef = mv.msymb(
    legend=True,
    symbol_type="marker",
    symbol_table_mode="advanced",
    symbol_advanced_table_max_level_colour="red",
    symbol_advanced_table_min_level_colour="blue",
    symbol_advanced_table_colour_direction="clockwise",
)

mv.setoutput(mv.png_output(output_width=1200, output_name="./obsplot3"))
mv.plot(area_view, dewpoint_t, symb_visdef)
Esempio n. 7
0
# define a view over the area of interest

area_view = mv.geoview(map_area_definition="corners",
                       area=[45.83, -13.87, 62.03, 8.92])

t2m_grib = mv.read("./t2m_grib.grib")

obs_3day = mv.read("./obs_3day.bufr")

t2m_gpt = mv.obsfilter(parameter="012004", output="geopoints", data=obs_3day)

diff = t2m_grib - t2m_gpt

diff_symb = mv.msymb(
    legend=True,
    symbol_type="marker",
    symbol_table_mode="advanced",
)

mv.setoutput(mv.png_output(output_width=1000, output_name="./obsdiff1"))
mv.plot(area_view, diff, diff_symb)

# Extract geopoints that are hotter by 1 deg or more
# hotter = mv.filter(diff, diff >= 1)
hotter = diff.filter(diff >= 1)

# Extract geopoints that are colder by 1 deg or more
# colder = mv.filter(diff, diff <= -1)
colder = diff.filter(diff <= -1)

# Get geopoints that are within +/-1
Esempio n. 8
0
# define a view over the area of interest

area_view = mv.geoview(map_area_definition='corners',
                       area=[45.83, -13.87, 62.03, 8.92])

t2m_grib = mv.read('./t2m_grib.grib')

obs_3day = mv.read('./obs_3day.bufr')

t2m_gpt = mv.obsfilter(parameter='012004', output='geopoints', data=obs_3day)

diff = t2m_grib - t2m_gpt

diff_symb = mv.msymb(
    legend=True,
    symbol_type='marker',
    symbol_table_mode='advanced',
)

mv.setoutput(mv.png_output(output_width=1000, output_name='./obsdiff1'))
mv.plot(area_view, diff, diff_symb)

# Extract geopoints that are hotter by 1 deg or more
#hotter = mv.filter(diff, diff >= 1)
hotter = diff.filter(diff >= 1)

# Extract geopoints that are colder by 1 deg or more
#colder = mv.filter(diff, diff <= -1)
colder = diff.filter(diff <= -1)

# Get geopoints that are within +/-1
Esempio n. 9
0
mv.plot(area_view, obs)

# ALTERNATIVELY, add an Observations Plotting visual definition

obs_plotting = mv.mobs(obs_temperature=False,
                       obs_cloud=False,
                       obs_low_cloud=False,
                       obs_dewpoint_colour='purple')

mv.setoutput(mv.png_output(output_width=1200, output_name='./obsplot2'))
mv.plot(area_view, obs, obs_plotting)

# ALTERNATIVELY, if we don't want to plot the whole observations, but instead want to
# extract a specific parameter from the BUFR messages, then we use the Observation Filter
# as shown here:

# dewpoint_t is a 'geopoints' variable
dewpoint_t = mv.obsfilter(output="geopoints", parameter='012006', data=obs)

# add an optional Symbol Plotting definition to get nice coloured circles
# at each point
symb_visdef = mv.msymb(legend=True,
                       symbol_type='marker',
                       symbol_table_mode='advanced',
                       symbol_advanced_table_max_level_colour='red',
                       symbol_advanced_table_min_level_colour='blue',
                       symbol_advanced_table_colour_direction='clockwise')

mv.setoutput(mv.png_output(output_width=1200, output_name='./obsplot3'))
mv.plot(area_view, dewpoint_t, symb_visdef)