# Complete path to file current_dir = os.path.dirname(os.path.abspath(__file__)) data_file = os.path.join(current_dir, data_file) data = get_data_from_mat_file(data_file) signal_1 = data[:2**12] signal_2 = data[2**12:] #------------------------------------------------------------------------------- # Setup analysis #------------------------------------------------------------------------------- # Multifractal analysis object mfa = mf.MFA() ### Set parameters. They can also be set in the constructor of mf.MFA() # wavelet to be used (see PyWavelets documentation for more options) mfa.wt_name = 'db3' # value of p for p-leaders, can be numpy.inf # NOTE: instead of defining the value of p, we can set the variable mfa.formalism, # e.g., mfa.formalism = 'wlmf' (corresponding to p = np.inf) or # mfa.formalism = 'wcmf' (which uses wavelet coefficients only, not leaders) mfa.p = 2 # scaling range mfa.j1 = 3 mfa.j2 = 9
# ------------------------------------------------------------------------------ # Run mf_analysis # ------------------------------------------------------------------------------ for test_filename in test_data_files_full: print(" ") print("* Analyzing file ", test_filename) # Load data data = get_data_from_mat_file(test_filename) # Get output filename output_filename = out_filenames[test_filename] # Run mf_analysis and save results mfa = mfanalysis.MFA(verbose=0) with open(output_filename, 'a') as csvfile: writer = csv.writer(csvfile, lineterminator='\n') for test_index in params: # test_index is a string, e.g. '123', and starts from '1' if int(test_index) % 10 == 0: print(" -- Test " + test_index, " of ", n_tests) # Set parameters in MFA object mfa.q = np.array(params[test_index]['q']) mfa.j1 = params[test_index]['j1'] mfa.j2 = params[test_index]['j2'] mfa.wtype = params[test_index]['wtype'] mfa.gamint = params[test_index]['gamint'] mfa.wt_name = 'db' + str( params[test_index]['nb_vanishing_moments'])