Esempio n. 1
0
 def NewWindow(self):
     self.socks.append(mfem.socketstream(self.host, self.port))
     self.output = self.socks[-1]
     self.output.precision(8)                          
     self.socks
     self.sid = self.sid + 1
Esempio n. 2
0
a = mfem.BilinearForm(fespace)
a.AddDomainIntegrator(mfem.DiffusionIntegrator(one))
#9. Assemble the bilinear form and the corresponding linear system,
#   applying any necessary transformations such as: eliminating boundary
#   conditions, applying conforming constraints for non-conforming AMR,
#   static condensation, etc.
if static_cond: a.EnableStaticCondensation()
a.Assemble()

A = mfem.SparseMatrix()
B = mfem.Vector()
X = mfem.Vector()
a.FormLinearSystem(ess_tdof_list, x, b, A, X, B)
print("Size of linear system: " + str(A.Size()))

# 10. Solve
M = mfem.GSSmoother(A)
mfem.PCG(A, M, B, X, 1, 200, 1e-12, 0.0)
# 11. Recover the solution as a finite element grid function.
a.RecoverFEMSolution(X, b, x)
# 12. Save the refined mesh and the solution. This output can be viewed later
#     using GLVis: "glvis -m refined.mesh -g sol.gf".
mesh.PrintToFile('refined.mesh', 8)
x.SaveToFile('sol.gf', 8)

#13. Send the solution by socket to a GLVis server.
if (visualization):
    sol_sock = mfem.socketstream("localhost", 19916)
    sol_sock.precision(8)
    sol_sock.send_solution(mesh, x)
Esempio n. 3
0
one = mfem.ConstantCoefficient(1.0)
bdr = BdrCoefficient()
rhs = RhsCoefficient()

integ = mfem.DiffusionIntegrator(one)
a.AddDomainIntegrator(integ)
b.AddDomainIntegrator(mfem.DomainLFIntegrator(rhs))

# 7. The solution vector x and the associated finite element grid function
#    will be maintained over the AMR iterations.
x = mfem.GridFunction(fespace)

# 8. Connect to GLVis.
if visualization:
    sout = mfem.socketstream("localhost", 19916)
    sout.precision(8)

# 9. As in Example 6, we set up a Zienkiewicz-Zhu estimator that will be
#    used to obtain element error indicators. The integrator needs to
#    provide the method ComputeElementFlux. The smoothed flux space is a
#    vector valued H1 space here.
flux_fespace = mfem.FiniteElementSpace(mesh, fec, sdim)

# own_flux_fes = False indicate flux_fespace is passed by reference
# this is actually default action, but for the sake of explanaiton
# it is explicitly set. If you want to pass pointer use own_flux_fes = True
estimator = mfem.ZienkiewiczZhuEstimator(integ,
                                         x,
                                         flux_fespace,
                                         own_flux_fes=False)
Esempio n. 4
0
def run(order=1,
        static_cond=False,
        meshfile=def_meshfile,
        visualization=False):

    mesh = mfem.Mesh(meshfile, 1, 1)
    dim = mesh.Dimension()

    #   3. Refine the mesh to increase the resolution. In this example we do
    #      'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
    #      largest number that gives a final mesh with no more than 50,000
    #      elements.
    ref_levels = int(np.floor(
        np.log(50000. / mesh.GetNE()) / np.log(2.) / dim))
    for x in range(ref_levels):
        mesh.UniformRefinement()

    #5. Define a finite element space on the mesh. Here we use vector finite
    #   elements, i.e. dim copies of a scalar finite element space. The vector
    #   dimension is specified by the last argument of the FiniteElementSpace
    #   constructor. For NURBS meshes, we use the (degree elevated) NURBS space
    #   associated with the mesh nodes.
    if order > 0:
        fec = mfem.H1_FECollection(order, dim)
    elif mesh.GetNodes():
        fec = mesh.GetNodes().OwnFEC()
        prinr("Using isoparametric FEs: " + str(fec.Name()))
    else:
        order = 1
        fec = mfem.H1_FECollection(order, dim)
    fespace = mfem.FiniteElementSpace(mesh, fec)
    print('Number of finite element unknowns: ' + str(fespace.GetTrueVSize()))
    # 5. Determine the list of true (i.e. conforming) essential boundary dofs.
    #    In this example, the boundary conditions are defined by marking all
    #    the boundary attributes from the mesh as essential (Dirichlet) and
    #    converting them to a list of true dofs.
    ess_tdof_list = mfem.intArray()
    if mesh.bdr_attributes.Size() > 0:
        ess_bdr = mfem.intArray([1] * mesh.bdr_attributes.Max())
        ess_bdr = mfem.intArray(mesh.bdr_attributes.Max())
        ess_bdr.Assign(1)
        fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list)
    #6. Set up the linear form b(.) which corresponds to the right-hand side of
    #   the FEM linear system, which in this case is (1,phi_i) where phi_i are
    #   the basis functions in the finite element fespace.
    b = mfem.LinearForm(fespace)
    one = mfem.ConstantCoefficient(1.0)
    b.AddDomainIntegrator(mfem.DomainLFIntegrator(one))
    b.Assemble()
    #7. Define the solution vector x as a finite element grid function
    #   corresponding to fespace. Initialize x with initial guess of zero,
    #   which satisfies the boundary conditions.
    x = mfem.GridFunction(fespace)
    x.Assign(0.0)
    #8. Set up the bilinear form a(.,.) on the finite element space
    #   corresponding to the Laplacian operator -Delta, by adding the Diffusion
    #   domain integrator.
    a = mfem.BilinearForm(fespace)
    a.AddDomainIntegrator(mfem.DiffusionIntegrator(one))
    #9. Assemble the bilinear form and the corresponding linear system,
    #   applying any necessary transformations such as: eliminating boundary
    #   conditions, applying conforming constraints for non-conforming AMR,
    #   static condensation, etc.
    if static_cond: a.EnableStaticCondensation()
    a.Assemble()

    A = mfem.OperatorPtr()
    B = mfem.Vector()
    X = mfem.Vector()

    a.FormLinearSystem(ess_tdof_list, x, b, A, X, B)
    print("Size of linear system: " + str(A.Height()))

    # 10. Solve
    AA = mfem.OperatorHandle2SparseMatrix(A)
    M = mfem.GSSmoother(AA)
    mfem.PCG(AA, M, B, X, 1, 200, 1e-12, 0.0)

    # 11. Recover the solution as a finite element grid function.
    a.RecoverFEMSolution(X, b, x)
    # 12. Save the refined mesh and the solution. This output can be viewed later
    #     using GLVis: "glvis -m refined.mesh -g sol.gf".
    mesh.Print('refined.mesh', 8)
    x.Save('sol.gf', 8)

    #13. Send the solution by socket to a GLVis server.
    if (visualization):
        sol_sock = mfem.socketstream("localhost", 19916)
        sol_sock.precision(8)
        sol_sock.send_solution(mesh, x)
Esempio n. 5
0
def ex19_main(args):
    ref_levels = args.refine
    order = args.order
    visualization = args.visualization
    mu = args.shear_modulus
    newton_rel_tol = args.relative_tolerance
    newton_abs_tol = args.absolute_tolerance
    newton_iter = args.newton_iterations

    parser.print_options(args)

    meshfile = expanduser(join(path, 'data', args.mesh))
    mesh = mfem.Mesh(meshfile, 1, 1)
    dim = mesh.Dimension()

    for lev in range(ref_levels):
        mesh.UniformRefinement()

    #  4. Define the shear modulus for the incompressible Neo-Hookean material
    c_mu = mfem.ConstantCoefficient(mu)

    #  5. Define the finite element spaces for displacement and pressure
    #     (Taylor-Hood elements). By default, the displacement (u/x) is a second
    #     order vector field, while the pressure (p) is a linear scalar function.
    quad_coll = mfem.H1_FECollection(order, dim)
    lin_coll = mfem.H1_FECollection(order - 1, dim)

    R_space = mfem.FiniteElementSpace(mesh, quad_coll, dim,
                                      mfem.Ordering.byVDIM)
    W_space = mfem.FiniteElementSpace(mesh, lin_coll)

    spaces = [R_space, W_space]
    R_size = R_space.GetVSize()
    W_size = W_space.GetVSize()

    #   6. Define the Dirichlet conditions (set to boundary attribute 1 and 2)
    ess_bdr_u = mfem.intArray(R_space.GetMesh().bdr_attributes.Max())
    ess_bdr_p = mfem.intArray(W_space.GetMesh().bdr_attributes.Max())
    ess_bdr_u.Assign(0)
    ess_bdr_u[0] = 1
    ess_bdr_u[1] = 1
    ess_bdr_p.Assign(0)
    ess_bdr = [ess_bdr_u, ess_bdr_p]

    print("***********************************************************")
    print("dim(u) = " + str(R_size))
    print("dim(p) = " + str(W_size))
    print("dim(u+p) = " + str(R_size + W_size))
    print("***********************************************************")

    block_offsets = intArray([0, R_size, W_size])
    block_offsets.PartialSum()

    xp = mfem.BlockVector(block_offsets)

    #  9. Define grid functions for the current configuration, reference
    #     configuration, final deformation, and pressure
    x_gf = mfem.GridFunction(R_space)
    x_ref = mfem.GridFunction(R_space)
    x_def = mfem.GridFunction(R_space)
    p_gf = mfem.GridFunction(W_space)

    x_gf.MakeRef(R_space, xp.GetBlock(0), 0)
    p_gf.MakeRef(W_space, xp.GetBlock(1), 0)

    deform = InitialDeformation(dim)
    refconfig = ReferenceConfiguration(dim)

    x_gf.ProjectCoefficient(deform)
    x_ref.ProjectCoefficient(refconfig)
    p_gf.Assign(0.0)

    #  10. Initialize the incompressible neo-Hookean operator
    oper = RubberOperator(spaces, ess_bdr, block_offsets, newton_rel_tol,
                          newton_abs_tol, newton_iter, mu)
    #  11. Solve the Newton system
    oper.Solve(xp)

    #  12. Compute the final deformation
    mfem.subtract_vector(x_gf, x_ref, x_def)

    #  13. Visualize the results if requested
    if (visualization):
        vis_u = mfem.socketstream("localhost", 19916)
        visualize(vis_u, mesh, x_gf, x_def, "Deformation", True)
        vis_p = mfem.socketstream("localhost", 19916)
        visualize(vis_p, mesh, x_gf, p_gf, "Deformation", True)

    #  14. Save the displaced mesh, the final deformation, and the pressure
    nodes = x_gf
    owns_nodes = 0
    nodes, owns_nodes = mesh.SwapNodes(nodes, owns_nodes)

    mesh.Print('deformed.mesh', 8)
    p_gf.Save('pressure.sol', 8)
    x_def.Save("deformation.sol", 8)