Esempio n. 1
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # 1 bone chain Upv ref ==============================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root, self.getName("ikHandleLegChainUpvRef"),
            self.legChainUpvRef, "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.legChainUpvRef[0],
                            self.ik_ctl,
                            self.upv_cns,
                            mo=True)

        # Visibilities -------------------------------------
        # shape.dispGeometry
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.line_ref.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        o_node = applyop.gear_ikfk2bone_op(out, self.root_ctl, self.ik_ref,
                                           self.upv_ctl, self.fk_ctl[0],
                                           self.fk_ctl[1], self.fk_ref,
                                           self.length0, self.length1,
                                           self.negate)

        pm.connectAttr(self.blend_att, o_node + ".blend")
        if self.negate:
            mulVal = -1
        else:
            mulVal = 1
        node.createMulNode(self.roll_att, mulVal, o_node + ".roll")
        # pm.connectAttr(self.roll_att, o_node+".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")

        # Twist references ---------------------------------
        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.root.attr("worldInverseMatrix"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        # spline IK for  twist jnts
        self.ikhUpLegTwist, self.uplegTwistCrv = applyop.splineIK(
            self.getName("uplegTwist"),
            self.uplegTwistChain,
            parent=self.root,
            cParent=self.bone0)

        self.ikhLowLegTwist, self.lowlegTwistCrv = applyop.splineIK(
            self.getName("lowlegTwist"),
            self.lowlegTwistChain,
            parent=self.root,
            cParent=self.bone1)

        # references
        self.ikhUpLegRef, self.tmpCrv = applyop.splineIK(
            self.getName("uplegRollRef"),
            self.uplegRollRef,
            parent=self.root,
            cParent=self.bone0)

        self.ikhLowLegRef, self.tmpCrv = applyop.splineIK(
            self.getName("lowlegRollRef"),
            self.lowlegRollRef,
            parent=self.root,
            cParent=self.eff_loc)

        self.ikhAuxTwist, self.tmpCrv = applyop.splineIK(
            self.getName("auxTwist"),
            self.auxTwistChain,
            parent=self.root,
            cParent=self.eff_loc)

        # setting connexions for ikhUpLegTwist
        self.ikhUpLegTwist.attr("dTwistControlEnable").set(True)
        self.ikhUpLegTwist.attr("dWorldUpType").set(4)
        self.ikhUpLegTwist.attr("dWorldUpAxis").set(3)
        self.ikhUpLegTwist.attr("dWorldUpVectorZ").set(1.0)
        self.ikhUpLegTwist.attr("dWorldUpVectorY").set(0.0)
        self.ikhUpLegTwist.attr("dWorldUpVectorEndZ").set(1.0)
        self.ikhUpLegTwist.attr("dWorldUpVectorEndY").set(0.0)
        pm.connectAttr(self.uplegRollRef[0].attr("worldMatrix[0]"),
                       self.ikhUpLegTwist.attr("dWorldUpMatrix"))
        pm.connectAttr(self.bone0.attr("worldMatrix[0]"),
                       self.ikhUpLegTwist.attr("dWorldUpMatrixEnd"))

        # setting connexions for ikhAuxTwist
        self.ikhAuxTwist.attr("dTwistControlEnable").set(True)
        self.ikhAuxTwist.attr("dWorldUpType").set(4)
        self.ikhAuxTwist.attr("dWorldUpAxis").set(3)
        self.ikhAuxTwist.attr("dWorldUpVectorZ").set(1.0)
        self.ikhAuxTwist.attr("dWorldUpVectorY").set(0.0)
        self.ikhAuxTwist.attr("dWorldUpVectorEndZ").set(1.0)
        self.ikhAuxTwist.attr("dWorldUpVectorEndY").set(0.0)
        pm.connectAttr(self.lowlegRollRef[0].attr("worldMatrix[0]"),
                       self.ikhAuxTwist.attr("dWorldUpMatrix"))
        pm.connectAttr(self.tws_ref.attr("worldMatrix[0]"),
                       self.ikhAuxTwist.attr("dWorldUpMatrixEnd"))
        pm.connectAttr(self.auxTwistChain[1].attr("rx"),
                       self.ikhLowLegTwist.attr("twist"))

        pm.parentConstraint(self.bone1, self.aux_npo, maintainOffset=True)

        # scale arm length for twist chain (not the squash and stretch)
        arclen_node = pm.arclen(self.uplegTwistCrv, ch=True)
        alAttrUpLeg = arclen_node.attr("arcLength")
        muldiv_nodeArm = pm.createNode("multiplyDivide")
        pm.connectAttr(arclen_node.attr("arcLength"),
                       muldiv_nodeArm.attr("input1X"))
        muldiv_nodeArm.attr("input2X").set(alAttrUpLeg.get())
        muldiv_nodeArm.attr("operation").set(2)
        for jnt in self.uplegTwistChain:
            pm.connectAttr(muldiv_nodeArm.attr("outputX"), jnt.attr("sx"))

        # scale forearm length for twist chain (not the squash and stretch)
        arclen_node = pm.arclen(self.lowlegTwistCrv, ch=True)
        alAttrLowLeg = arclen_node.attr("arcLength")
        muldiv_nodeLowLeg = pm.createNode("multiplyDivide")
        pm.connectAttr(arclen_node.attr("arcLength"),
                       muldiv_nodeLowLeg.attr("input1X"))
        muldiv_nodeLowLeg.attr("input2X").set(alAttrLowLeg.get())
        muldiv_nodeLowLeg.attr("operation").set(2)
        for jnt in self.lowlegTwistChain:
            pm.connectAttr(muldiv_nodeLowLeg.attr("outputX"), jnt.attr("sx"))

        # scale compensation for the first  twist join
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix[0]"),
                       dm_node.attr("inputMatrix"))
        pm.connectAttr(dm_node.attr("outputScale"),
                       self.uplegTwistChain[0].attr("inverseScale"))
        pm.connectAttr(dm_node.attr("outputScale"),
                       self.lowlegTwistChain[0].attr("inverseScale"))

        # tangent controls
        muldiv_node = pm.createNode("multiplyDivide")
        muldiv_node.attr("input2X").set(-1)
        pm.connectAttr(self.tws1A_npo.attr("rz"), muldiv_node.attr("input1X"))
        muldiv_nodeBias = pm.createNode("multiplyDivide")
        pm.connectAttr(muldiv_node.attr("outputX"),
                       muldiv_nodeBias.attr("input1X"))
        pm.connectAttr(self.roundness_att, muldiv_nodeBias.attr("input2X"))
        pm.connectAttr(muldiv_nodeBias.attr("outputX"),
                       self.tws1A_loc.attr("rz"))
        if self.negate:
            axis = "xz"
        else:
            axis = "-xz"
        applyop.aimCns(self.tws1A_npo,
                       self.tws0_loc,
                       axis=axis,
                       wupType=2,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        applyop.aimCns(self.lowlegTangentB_loc,
                       self.lowlegTangentA_npo,
                       axis=axis,
                       wupType=2,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        pm.pointConstraint(self.eff_loc, self.lowlegTangentB_loc)

        muldiv_node = pm.createNode("multiplyDivide")
        muldiv_node.attr("input2X").set(-1)
        pm.connectAttr(self.tws1B_npo.attr("rz"), muldiv_node.attr("input1X"))
        muldiv_nodeBias = pm.createNode("multiplyDivide")
        pm.connectAttr(muldiv_node.attr("outputX"),
                       muldiv_nodeBias.attr("input1X"))
        pm.connectAttr(self.roundness_att, muldiv_nodeBias.attr("input2X"))
        pm.connectAttr(muldiv_nodeBias.attr("outputX"),
                       self.tws1B_loc.attr("rz"))
        if self.negate:
            axis = "-xz"
        else:
            axis = "xz"
        applyop.aimCns(self.tws1B_npo,
                       self.tws2_loc,
                       axis=axis,
                       wupType=2,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        applyop.aimCns(self.uplegTangentA_loc,
                       self.uplegTangentB_npo,
                       axis=axis,
                       wupType=2,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root_ctl.attr("sx"))

        # comp scaling issue
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")

        self.volDriver_att = div_node2 + ".outputX"

        # connecting tangent scaele compensation after volume to
        # avoid duplicate some nodes
        distA_node = node.createDistNode(self.tws0_loc, self.mid_ctl)
        distB_node = node.createDistNode(self.mid_ctl, self.tws2_loc)

        div_nodeUpLeg = node.createDivNode(distA_node + ".distance",
                                           dm_node.attr("outputScaleX"))

        div_node2 = node.createDivNode(div_nodeUpLeg + ".outputX",
                                       distA_node.attr("distance").get())

        pm.connectAttr(div_node2.attr("outputX"), self.tws1A_loc.attr("sx"))

        pm.connectAttr(div_node2.attr("outputX"),
                       self.uplegTangentA_loc.attr("sx"))

        div_nodeLowLeg = node.createDivNode(distB_node + ".distance",
                                            dm_node.attr("outputScaleX"))
        div_node2 = node.createDivNode(div_nodeLowLeg + ".outputX",
                                       distB_node.attr("distance").get())

        pm.connectAttr(div_node2.attr("outputX"), self.tws1B_loc.attr("sx"))
        pm.connectAttr(div_node2.attr("outputX"),
                       self.lowlegTangentB_loc.attr("sx"))

        # conection curve
        cnts = [
            self.uplegTangentA_loc, self.uplegTangentA_ctl,
            self.uplegTangentB_ctl, self.kneeTangent_ctl
        ]
        applyop.gear_curvecns_op(self.uplegTwistCrv, cnts)

        cnts = [
            self.kneeTangent_ctl, self.lowlegTangentA_ctl,
            self.lowlegTangentB_ctl, self.lowlegTangentB_loc
        ]
        applyop.gear_curvecns_op(self.lowlegTwistCrv, cnts)

        # Tangent controls vis
        for shp in self.uplegTangentA_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))
        for shp in self.uplegTangentB_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))
        for shp in self.lowlegTangentA_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))
        for shp in self.lowlegTangentB_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))
        for shp in self.kneeTangent_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):
            if i < (self.settings["div0"] + 2):
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.uplegTwistChain[i] + ".worldMatrix",
                    div_cns + ".parentInverseMatrix")
                lastUpLegDiv = div_cns
            else:
                o_node = self.lowlegTwistChain[i - (self.settings["div0"] + 2)]
                mulmat_node = applyop.gear_mulmatrix_op(
                    o_node + ".worldMatrix", div_cns + ".parentInverseMatrix")
                lastLowLegDiv = div_cns
            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", div_cns + ".t")
            pm.connectAttr(dm_node + ".outputRotate", div_cns + ".r")

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")

        # force translation for last loc arm and foreamr
        applyop.gear_mulmatrix_op(self.kneeTangent_ctl.worldMatrix,
                                  lastUpLegDiv.parentInverseMatrix,
                                  lastUpLegDiv, "t")
        applyop.gear_mulmatrix_op(self.tws2_loc.worldMatrix,
                                  lastLowLegDiv.parentInverseMatrix,
                                  lastLowLegDiv, "t")

        # NOTE: next line fix the issue on meters.
        # This is special case becasuse the IK solver from mGear use the
        # scale as lenght and we have shear
        # TODO: check for a more clean and elegant solution instead of
        # re-match the world matrix again
        transform.matchWorldTransform(self.fk_ctl[0], self.match_fk0_off)
        transform.matchWorldTransform(self.fk_ctl[1], self.match_fk1_off)
        transform.matchWorldTransform(self.fk_ctl[0], self.match_fk0)
        transform.matchWorldTransform(self.fk_ctl[1], self.match_fk1)

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)

        return
Esempio n. 2
0
    def addOperators(self):

        # Visibilities -------------------------------------
        # fk
        fkvis_node = nod.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        att.setRotOrder(self.fk0_ctl, "XZY")
        att.setRotOrder(self.fk1_ctl, "XYZ")
        att.setRotOrder(self.fk2_ctl, "YZX")
        att.setRotOrder(self.ik_ctl, "ZYX")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        node = aop.gear_ikfk2bone_op(out, self.root, self.ik_ref, self.upv_ctl,
                                     self.fk_ctl[0], self.fk_ctl[1],
                                     self.fk_ref, self.length0, self.length1,
                                     self.negate)

        pm.connectAttr(self.blend_att, node + ".blend")
        pm.connectAttr(self.roll_att, node + ".roll")
        pm.connectAttr(self.scale_att, node + ".scaleA")
        pm.connectAttr(self.scale_att, node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, node + ".maxstretch")
        pm.connectAttr(self.slide_att, node + ".slide")
        pm.connectAttr(self.softness_att, node + ".softness")
        pm.connectAttr(self.reverse_att, node + ".reverse")

        # Twist references ---------------------------------

        node = aop.gear_mulmatrix_op(self.eff_loc.attr("worldMatrix"),
                                     self.root.attr("worldInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        #spline IK for  twist jnts
        self.ikhArmTwist, self.armTwistCrv = aop.splineIK(
            self.getName("armTwist"),
            self.armTwistChain,
            parent=self.root,
            cParent=self.bone0)
        self.ikhForearmTwist, self.forearmTwistCrv = aop.splineIK(
            self.getName("forearmTwist"),
            self.forearmTwistChain,
            parent=self.root,
            cParent=self.bone1)

        #references
        self.ikhArmRef, self.tmpCrv = aop.splineIK(self.getName("armRollRef"),
                                                   self.armRollRef,
                                                   parent=self.root,
                                                   cParent=self.bone0)
        self.ikhForearmRef, self.tmpCrv = aop.splineIK(
            self.getName("forearmRollRef"),
            self.forearmRollRef,
            parent=self.root,
            cParent=self.eff_loc)
        self.ikhAuxTwist, self.tmpCrv = aop.splineIK(self.getName("auxTwist"),
                                                     self.auxTwistChain,
                                                     parent=self.root,
                                                     cParent=self.eff_loc)

        #setting connexions for ikhArmTwist
        self.ikhArmTwist.attr("dTwistControlEnable").set(True)
        self.ikhArmTwist.attr("dWorldUpType").set(4)
        self.ikhArmTwist.attr("dWorldUpAxis").set(3)
        self.ikhArmTwist.attr("dWorldUpVectorZ").set(1.0)
        self.ikhArmTwist.attr("dWorldUpVectorY").set(0.0)
        self.ikhArmTwist.attr("dWorldUpVectorEndZ").set(1.0)
        self.ikhArmTwist.attr("dWorldUpVectorEndY").set(0.0)
        pm.connectAttr(self.armRollRef[0].attr("worldMatrix[0]"),
                       self.ikhArmTwist.attr("dWorldUpMatrix"))
        pm.connectAttr(self.bone0.attr("worldMatrix[0]"),
                       self.ikhArmTwist.attr("dWorldUpMatrixEnd"))

        #setting connexions for ikhAuxTwist
        self.ikhAuxTwist.attr("dTwistControlEnable").set(True)
        self.ikhAuxTwist.attr("dWorldUpType").set(4)
        self.ikhAuxTwist.attr("dWorldUpAxis").set(3)
        self.ikhAuxTwist.attr("dWorldUpVectorZ").set(1.0)
        self.ikhAuxTwist.attr("dWorldUpVectorY").set(0.0)
        self.ikhAuxTwist.attr("dWorldUpVectorEndZ").set(1.0)
        self.ikhAuxTwist.attr("dWorldUpVectorEndY").set(0.0)
        pm.connectAttr(self.forearmRollRef[0].attr("worldMatrix[0]"),
                       self.ikhAuxTwist.attr("dWorldUpMatrix"))
        pm.connectAttr(self.eff_loc.attr("worldMatrix[0]"),
                       self.ikhAuxTwist.attr("dWorldUpMatrixEnd"))
        pm.connectAttr(self.auxTwistChain[1].attr("rx"),
                       self.ikhForearmTwist.attr("twist"))

        pm.parentConstraint(self.bone1, self.aux_npo, maintainOffset=True)

        #scale arm length for twist chain (not the squash and stretch)
        arclen_node = pm.arclen(self.armTwistCrv, ch=True)
        alAttrArm = arclen_node.attr("arcLength")
        muldiv_nodeArm = pm.createNode("multiplyDivide")
        pm.connectAttr(arclen_node.attr("arcLength"),
                       muldiv_nodeArm.attr("input1X"))
        muldiv_nodeArm.attr("input2X").set(alAttrArm.get())
        muldiv_nodeArm.attr("operation").set(2)
        for jnt in self.armTwistChain:
            pm.connectAttr(muldiv_nodeArm.attr("outputX"), jnt.attr("sx"))

        #scale forearm length for twist chain (not the squash and stretch)
        arclen_node = pm.arclen(self.forearmTwistCrv, ch=True)
        alAttrForearm = arclen_node.attr("arcLength")
        muldiv_nodeForearm = pm.createNode("multiplyDivide")
        pm.connectAttr(arclen_node.attr("arcLength"),
                       muldiv_nodeForearm.attr("input1X"))
        muldiv_nodeForearm.attr("input2X").set(alAttrForearm.get())
        muldiv_nodeForearm.attr("operation").set(2)
        for jnt in self.forearmTwistChain:
            pm.connectAttr(muldiv_nodeForearm.attr("outputX"), jnt.attr("sx"))

        #scale compensation for the first  twist join
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix[0]"),
                       dm_node.attr("inputMatrix"))
        pm.connectAttr(dm_node.attr("outputScale"),
                       self.armTwistChain[0].attr("inverseScale"))
        pm.connectAttr(dm_node.attr("outputScale"),
                       self.forearmTwistChain[0].attr("inverseScale"))

        #tangent controls
        muldiv_node = pm.createNode("multiplyDivide")
        muldiv_node.attr("input2X").set(-1)
        pm.connectAttr(self.tws1A_npo.attr("rz"), muldiv_node.attr("input1X"))
        muldiv_nodeBias = pm.createNode("multiplyDivide")
        pm.connectAttr(muldiv_node.attr("outputX"),
                       muldiv_nodeBias.attr("input1X"))
        pm.connectAttr(self.roundness_att, muldiv_nodeBias.attr("input2X"))
        pm.connectAttr(muldiv_nodeBias.attr("outputX"),
                       self.tws1A_loc.attr("rz"))
        if self.negate:
            axis = "xz"
        else:
            axis = "-xz"
        aop.aimCns(self.tws1A_npo,
                   self.tws0_loc,
                   axis=axis,
                   wupType=2,
                   wupVector=[0, 0, 1],
                   wupObject=self.mid_ctl,
                   maintainOffset=False)

        aop.aimCns(self.forearmTangentB_loc,
                   self.forearmTangentA_npo,
                   axis=axis,
                   wupType=2,
                   wupVector=[0, 0, 1],
                   wupObject=self.mid_ctl,
                   maintainOffset=False)
        pm.pointConstraint(self.eff_loc, self.forearmTangentB_loc)

        muldiv_node = pm.createNode("multiplyDivide")
        muldiv_node.attr("input2X").set(-1)
        pm.connectAttr(self.tws1B_npo.attr("rz"), muldiv_node.attr("input1X"))
        muldiv_nodeBias = pm.createNode("multiplyDivide")
        pm.connectAttr(muldiv_node.attr("outputX"),
                       muldiv_nodeBias.attr("input1X"))
        pm.connectAttr(self.roundness_att, muldiv_nodeBias.attr("input2X"))
        pm.connectAttr(muldiv_nodeBias.attr("outputX"),
                       self.tws1B_loc.attr("rz"))
        if self.negate:
            axis = "-xz"
        else:
            axis = "xz"
        aop.aimCns(self.tws1B_npo,
                   self.tws2_loc,
                   axis=axis,
                   wupType=2,
                   wupVector=[0, 0, 1],
                   wupObject=self.mid_ctl,
                   maintainOffset=False)

        aop.aimCns(self.armTangentA_loc,
                   self.armTangentB_npo,
                   axis=axis,
                   wupType=2,
                   wupVector=[0, 0, 1],
                   wupObject=self.mid_ctl,
                   maintainOffset=False)

        # Volume -------------------------------------------
        distA_node = nod.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = nod.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = nod.createAddNode(distA_node + ".distance",
                                     distB_node + ".distance")
        div_node = nod.createDivNode(add_node + ".output",
                                     self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = nod.createDivNode(div_node + ".outputX",
                                      dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        # connecting tangent scaele compensation after volume to aboid duplicate some nodes ------------------------------
        distA_node = nod.createDistNode(self.tws0_loc, self.mid_ctl)
        distB_node = nod.createDistNode(self.mid_ctl, self.tws2_loc)

        div_nodeArm = nod.createDivNode(distA_node + ".distance",
                                        dm_node.attr("outputScaleX"))
        div_node2 = nod.createDivNode(div_nodeArm + ".outputX",
                                      distA_node.attr("distance").get())
        pm.connectAttr(div_node2.attr("outputX"), self.tws1A_loc.attr("sx"))
        pm.connectAttr(div_node2.attr("outputX"),
                       self.armTangentA_loc.attr("sx"))

        div_nodeForearm = nod.createDivNode(distB_node + ".distance",
                                            dm_node.attr("outputScaleX"))
        div_node2 = nod.createDivNode(div_nodeForearm + ".outputX",
                                      distB_node.attr("distance").get())
        pm.connectAttr(div_node2.attr("outputX"), self.tws1B_loc.attr("sx"))
        pm.connectAttr(div_node2.attr("outputX"),
                       self.forearmTangentB_loc.attr("sx"))

        #conection curve
        aop.gear_curvecns_op(self.armTwistCrv, [
            self.armTangentA_loc, self.armTangentA_ctl, self.armTangentB_ctl,
            self.elbowTangent_ctl
        ])
        aop.gear_curvecns_op(self.forearmTwistCrv, [
            self.elbowTangent_ctl, self.forearmTangentA_ctl,
            self.forearmTangentB_ctl, self.forearmTangentB_loc
        ])

        #Tangent controls vis
        pm.connectAttr(self.tangentVis_att,
                       self.armTangentA_ctl.attr("visibility"))
        pm.connectAttr(self.tangentVis_att,
                       self.armTangentB_ctl.attr("visibility"))
        pm.connectAttr(self.tangentVis_att,
                       self.forearmTangentA_ctl.attr("visibility"))
        pm.connectAttr(self.tangentVis_att,
                       self.forearmTangentB_ctl.attr("visibility"))
        pm.connectAttr(self.tangentVis_att,
                       self.elbowTangent_ctl.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):
            if i < (self.settings["div0"] + 2):
                mulmat_node = aop.gear_mulmatrix_op(
                    self.armTwistChain[i] + ".worldMatrix",
                    div_cns + ".parentInverseMatrix")
            else:
                mulmat_node = aop.gear_mulmatrix_op(
                    self.forearmTwistChain[i - (self.settings["div0"] + 2)] +
                    ".worldMatrix", div_cns + ".parentInverseMatrix")
            dm_node = nod.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", div_cns + ".t")
            pm.connectAttr(dm_node + ".outputRotate", div_cns + ".r")

            # Squash n Stretch
            node = aop.gear_squashstretch2_op(div_cns, None,
                                              pm.getAttr(self.volDriver_att),
                                              "x")
            pm.connectAttr(self.volume_att, node + ".blend")
            pm.connectAttr(self.volDriver_att, node + ".driver")
            pm.connectAttr(self.st_att[i], node + ".stretch")
            pm.connectAttr(self.sq_att[i], node + ".squash")

        # return

        # NOTE: next line fix the issue on meters.
        # This is special case becasuse the IK solver from mGear use the scale as lenght and we have shear
        # TODO: check for a more clean and elegant solution instead of re-match the world matrix again
        tra.matchWorldTransform(self.fk_ctl[0], self.match_fk0_off)
        tra.matchWorldTransform(self.fk_ctl[1], self.match_fk1_off)
        tra.matchWorldTransform(self.fk_ctl[0], self.match_fk0)
        tra.matchWorldTransform(self.fk_ctl[1], self.match_fk1)

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)
Esempio n. 3
0
    def addOperators(self):

        # Visibilities -------------------------------------
        # fk
        fkvis_node = nod.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk0_roll_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        fkvis2_node = nod.createReverseNode(self.blend2_att)
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis2_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        att.setRotOrder(self.fk0_ctl, "YZX")
        att.setRotOrder(self.fk0_roll_ctl, "YZX")
        att.setRotOrder(self.fk1_ctl, "XYZ")
        att.setRotOrder(self.fk2_ctl, "YZX")
        # att.setRotOrder(self.ik_ctl, "ZYX")
        att.setRotOrder(self.ik_ctl, "XYZ")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_npo]

        #self.fk_ctl = [self.fk0_roll_ctl, self.fk1_ctl, self.fk2_mtx]
        node = aop.gear_ikfk2bone_op(out, self.root, self.ik_ref, self.upv_ctl,
                                     self.fk_ctl[0], self.fk_ctl[1],
                                     self.fk2_mtx, self.length0, self.length1,
                                     self.negate)

        pm.connectAttr(self.blend_att, node + ".blend")
        pm.connectAttr(self.roll_att, node + ".roll")
        pm.connectAttr(self.scale_att, node + ".scaleA")
        pm.connectAttr(self.scale_att, node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, node + ".maxstretch")
        pm.connectAttr(self.slide_att, node + ".slide")
        pm.connectAttr(self.softness_att, node + ".softness")
        pm.connectAttr(self.reverse_att, node + ".reverse")

        # auto upvector -------------------------------------

        if self.negate:
            node = aop.aimCns(self.upv_auv,
                              self.ik_ctl,
                              axis="-xy",
                              wupType=4,
                              wupVector=[0, 1, 0],
                              wupObject=self.upv_auv,
                              maintainOffset=False)
        else:
            node = aop.aimCns(self.upv_auv,
                              self.ik_ctl,
                              axis="xy",
                              wupType=4,
                              wupVector=[0, 1, 0],
                              wupObject=self.upv_auv,
                              maintainOffset=False)
        pb_node = pm.createNode("pairBlend")
        pb_node.attr("rotInterpolation").set(1)

        pm.connectAttr(self.upv_auv.attr("rotate"), pb_node + ".inRotate2")
        pm.connectAttr(pb_node + ".outRotate", self.upv_mtx.attr("rotate"))
        pm.connectAttr(self.auv_att, pb_node + ".weight")

        # fk2_npo position constraint to effector------------------------
        node = aop.gear_mulmatrix_op(self.eff_npo.attr("worldMatrix"),
                                     self.fk2_npo.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.fk2_npo.attr("translate"))
        # fk2_npo rotation constraint to bone1 (bugfixed) ------------------------
        node = aop.gear_mulmatrix_op(self.bone1.attr("worldMatrix"),
                                     self.fk2_npo.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.fk2_npo.attr("rotate"))

        # hand ikfk blending from fk ref to ik ref (serious bugfix)--------------------------------
        node = aop.gear_mulmatrix_op(self.fk_ref.attr("worldMatrix"),
                                     self.eff_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pb_node = pm.createNode("pairBlend")
        pb_node.attr("rotInterpolation").set(1)
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", pb_node + ".inRotate1")
        pm.connectAttr(self.blend2_att, pb_node + ".weight")
        pm.connectAttr(pb_node + ".outRotate", self.eff_loc.attr("rotate"))
        node = aop.gear_mulmatrix_op(self.ik_ref.attr("worldMatrix"),
                                     self.eff_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", pb_node + ".inRotate2")

        # Twist references ---------------------------------
        node = aop.gear_mulmatrix_op(self.mid_ctl.attr("worldMatrix"),
                                     self.tws1_npo.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws1_npo.attr("translate"))
        pm.connectAttr(dm_node + ".outputRotate", self.tws1_npo.attr("rotate"))
        pm.connectAttr(dm_node + ".outputScale", self.tws1_npo.attr("scale"))

        node = aop.gear_mulmatrix_op(self.eff_loc.attr("worldMatrix"),
                                     self.tws2_npo.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        # orientConstraint(self.eff_loc, self.tws2_rot, maintainOffset=False)
        node = aop.gear_mulmatrix_op(self.eff_loc.attr("worldMatrix"),
                                     self.tws2_rot.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        att.setRotOrder(self.tws2_rot, "XYZ")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_rot + ".rotate")

        self.tws0_rot.setAttr("sx", .001)
        self.tws2_rot.setAttr("sx", .001)

        add_node = nod.createAddNode(self.roundness_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        pm.connectAttr(self.armpit_roll_att, self.tws0_rot + ".rotateX")

        #Roll Shoulder--use aimconstraint withour uovwctor to solve the stable twist

        if self.negate:
            node = aop.aimCns(self.tws0_loc,
                              self.mid_ctl,
                              axis="-xy",
                              wupType=4,
                              wupVector=[0, 1, 0],
                              wupObject=self.tws0_npo,
                              maintainOffset=False)
        else:
            node = aop.aimCns(self.tws0_loc,
                              self.mid_ctl,
                              axis="xy",
                              wupType=4,
                              wupVector=[0, 1, 0],
                              wupObject=self.tws0_npo,
                              maintainOffset=False)

        # Volume -------------------------------------------
        distA_node = nod.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = nod.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = nod.createAddNode(distA_node + ".distance",
                                     distB_node + ".distance")
        div_node = nod.createDivNode(add_node + ".output",
                                     self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = nod.createDivNode(div_node + ".outputX",
                                      dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):

            if i < (self.settings["div0"] + 1):
                perc = i * .5 / (self.settings["div0"] + 1.0)
            elif i < (self.settings["div0"] + 2):
                perc = .49
            elif i < (self.settings["div0"] + 3):
                perc = .50
            elif i < (self.settings["div0"] + 4):
                perc = .51

            else:
                perc = .5 + (i - self.settings["div0"] -
                             3.0) * .5 / (self.settings["div1"] + 1.0)

            perc = max(.001, min(.990, perc))

            # Roll
            if self.negate:
                node = aop.gear_rollsplinekine_op(
                    div_cns, [self.tws2_rot, self.tws1_rot, self.tws0_rot],
                    1 - perc, 40)
            else:
                node = aop.gear_rollsplinekine_op(
                    div_cns, [self.tws0_rot, self.tws1_rot, self.tws2_rot],
                    perc, 40)

            pm.connectAttr(self.resample_att, node + ".resample")
            pm.connectAttr(self.absolute_att, node + ".absolute")

            # Squash n Stretch
            node = aop.gear_squashstretch2_op(div_cns, None,
                                              pm.getAttr(self.volDriver_att),
                                              "x")
            pm.connectAttr(self.volume_att, node + ".blend")
            pm.connectAttr(self.volDriver_att, node + ".driver")
            pm.connectAttr(self.st_att[i], node + ".stretch")
            pm.connectAttr(self.sq_att[i], node + ".squash")

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)

        return
Esempio n. 4
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # 1 bone chain Upv ref ==============================================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root,
            self.getName("ikHandleArmChainUpvRef"),
            self.armChainUpvRef,
            "ikSCsolver")
        pm.pointConstraint(self.ik_ctl,
                           self.ikHandleUpvRef)
        pm.parentConstraint(self.armChainUpvRef[0],
                            self.upv_cns,
                            mo=True)

        # Visibilities -------------------------------------
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        if self.settings["ikTR"]:
            for shp in self.ikRot_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        attribute.setRotOrder(self.fk0_ctl, "XZY")
        attribute.setRotOrder(self.fk1_ctl, "XYZ")
        attribute.setRotOrder(self.fk2_ctl, "YZX")
        attribute.setRotOrder(self.ik_ctl, "XYZ")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        o_node = applyop.gear_ikfk2bone_op(out,
                                           self.root,
                                           self.ik_ref,
                                           self.upv_ctl,
                                           self.fk_ctl[0],
                                           self.fk_ctl[1],
                                           self.fk_ref,
                                           self.length0,
                                           self.length1,
                                           self.negate)

        if self.settings["ikTR"]:
            # connect the control inputs
            outEff_dm = o_node.listConnections(c=True)[-1][1]

            inAttr = self.ikRot_npo.attr("translate")
            outEff_dm.attr("outputTranslate") >> inAttr

            outEff_dm.attr("outputScale") >> self.ikRot_npo.attr("scale")
            dm_node = node.createDecomposeMatrixNode(o_node.attr("outB"))
            dm_node.attr("outputRotate") >> self.ikRot_npo.attr("rotate")

            # rotation
            mulM_node = applyop.gear_mulmatrix_op(
                self.ikRot_ctl.attr("worldMatrix"),
                self.eff_loc.attr("parentInverseMatrix"))
            intM_node = applyop.gear_intmatrix_op(o_node.attr("outEff"),
                                                  mulM_node.attr("output"),
                                                  o_node.attr("blend"))
            dm_node = node.createDecomposeMatrixNode(intM_node.attr("output"))
            dm_node.attr("outputRotate") >> self.eff_loc.attr("rotate")
            transform.matchWorldTransform(self.fk2_ctl, self.ikRot_cns)

        # scale: this fix the scalin popping issue
        intM_node = applyop.gear_intmatrix_op(
            self.fk2_ctl.attr("worldMatrix"),
            self.ik_ctl_ref.attr("worldMatrix"),
            o_node.attr("blend"))
        mulM_node = applyop.gear_mulmatrix_op(
            intM_node.attr("output"),
            self.eff_loc.attr("parentInverseMatrix"))
        dm_node = node.createDecomposeMatrixNode(mulM_node.attr("output"))
        dm_node.attr("outputScale") >> self.eff_loc.attr("scale")

        pm.connectAttr(self.blend_att, o_node + ".blend")
        if self.negate:
            mulVal = -1
        else:
            mulVal = 1
        node.createMulNode(self.roll_att, mulVal, o_node + ".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")

        # Twist references ---------------------------------

        pm.pointConstraint(self.mid_ctl_twst_ref,
                           self.tws1_npo, maintainOffset=False)
        pm.connectAttr(self.mid_ctl.scaleX, self.tws1_loc.scaleX)
        pm.orientConstraint(self.mid_ctl_twst_ref,
                            self.tws1_npo, maintainOffset=False)

        o_node = applyop.gear_mulmatrix_op(self.eff_loc.attr(
            "worldMatrix"), self.root.attr("worldInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.tws2_rot.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        attribute.setRotOrder(self.tws2_rot, "XYZ")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_rot + ".rotate")

        self.tws0_rot.setAttr("sx", .001)
        self.tws2_rot.setAttr("sx", .001)

        add_node = node.createAddNode(self.roundness_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        pm.connectAttr(self.armpit_roll_att, self.tws0_rot + ".rotateX")

        # Roll Shoulder
        applyop.splineIK(self.getName("rollRef"), self.rollRef,
                         parent=self.root, cParent=self.bone0)

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        if self.settings["extraTweak"]:
            for tweak_ctl in self.tweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):

            if i < (self.settings["div0"] + 1):
                perc = i * .5 / (self.settings["div0"] + 1.0)
            elif i < (self.settings["div0"] + 2):
                perc = .49
            elif i < (self.settings["div0"] + 3):
                perc = .50
            elif i < (self.settings["div0"] + 4):
                perc = .51

            else:
                perc = .5 + \
                    (i - self.settings["div0"] - 3.0) * .5 / \
                    (self.settings["div1"] + 1.0)

            perc = max(.001, min(.990, perc))

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws2_rot, self.tws1_rot, self.tws0_rot],
                    1 - perc, 40)
            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws0_rot, self.tws1_rot, self.tws2_rot],
                    perc, 40)

            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)
        if self.settings["ikTR"]:
            transform.matchWorldTransform(self.ikRot_ctl, self.match_ikRot)
            transform.matchWorldTransform(self.fk_ctl[2], self.match_fk2)

        return
Esempio n. 5
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # 1 bone chain Upv ref ===========================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root, self.getName("ikHandleLegChainUpvRef"),
            self.legChainUpvRef, "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.legChainUpvRef[0],
                            self.ik_ctl,
                            self.upv_cns,
                            mo=True)

        # Visibilities -------------------------------------
        # shape.dispGeometry
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        o_node = applyop.gear_ikfk2bone_op(out, self.root_ctl, self.ik_ref,
                                           self.upv_ctl, self.fk_ctl[0],
                                           self.fk_ctl[1], self.fk_ref,
                                           self.length0, self.length1,
                                           self.negate)

        pm.connectAttr(self.blend_att, o_node + ".blend")
        if self.negate:
            mulVal = -1
        else:
            mulVal = 1
        node.createMulNode(self.roll_att, mulVal, o_node + ".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")

        # Twist references ---------------------------------
        self.ikhArmRef, self.tmpCrv = applyop.splineIK(
            self.getName("legRollRef"),
            self.rollRef,
            parent=self.root,
            cParent=self.bone0)

        pm.pointConstraint(self.mid_ctl, self.tws1_loc, maintainOffset=False)
        pm.scaleConstraint(self.mid_ctl, self.tws1_loc, maintainOffset=False)
        applyop.oriCns(self.mid_ctl, self.tws1_rot, maintainOffset=False)

        pm.pointConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        pm.scaleConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        applyop.oriCns(self.bone1, self.tws2_loc, maintainOffset=False)

        applyop.oriCns(self.tws_ref, self.tws2_rot)

        self.tws0_loc.setAttr("sx", .001)
        self.tws2_loc.setAttr("sx", .001)

        add_node = node.createAddNode(self.roundness_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root_ctl.attr("sx"))

        # comp scaling issue
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")

        self.volDriver_att = div_node2 + ".outputX"

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):
            subdiv = False
            if i == len(self.div_cns) - 1 or i == 0:
                subdiv = 45
            else:
                subdiv = 10

            if i < (self.settings["div0"] + 1):
                perc = i * .5 / (self.settings["div0"] + 1.0)
            elif i < (self.settings["div0"] + 2):
                perc = .49
                subdiv = 45
            elif i < (self.settings["div0"] + 3):
                perc = .50
                subdiv = 45
            elif i < (self.settings["div0"] + 4):
                perc = .51
                subdiv = 45

            else:
                perc = (.5 + (i - self.settings["div0"] - 3.0) * .5 /
                        (self.settings["div1"] + 1.0))

            perc = max(.001, min(.999, perc))

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws2_rot, self.tws1_rot, self.tws0_rot],
                    1 - perc, subdiv)
            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws0_rot, self.tws1_rot, self.tws2_rot],
                    perc, subdiv)

            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")

        # NOTE: next line fix the issue on meters.
        # This is special case becasuse the IK solver from mGear use
        # the scale as lenght and we have shear
        # TODO: check for a more clean and elegant solution instead of
        # re-match the world matrix again
        # transform.matchWorldTransform(self.fk_ctl[0], self.match_fk0_off)
        # transform.matchWorldTransform(self.fk_ctl[1], self.match_fk1_off)
        # transform.matchWorldTransform(self.fk_ctl[0], self.match_fk0)
        # transform.matchWorldTransform(self.fk_ctl[1], self.match_fk1)

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)
        return
Esempio n. 6
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Visibilities -------------------------------------
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk0_roll_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_roll_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        fkvis2_node = node.createReverseNode(self.blend2_att)
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis2_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # jnt ctl
        for ctl in (self.div_ctls):
            for shp in ctl.getShapes():
                pm.connectAttr(self.jntctl_vis_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        attribute.setRotOrder(self.fk0_ctl, "YZX")
        attribute.setRotOrder(self.fk1_ctl, "XYZ")
        attribute.setRotOrder(self.fk2_ctl, "YZX")
        attribute.setRotOrder(self.ik_ctl, "XYZ")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_npo]

        o_node = applyop.gear_ikfk2bone_op(out, self.root, self.ik_ref,
                                           self.upv_ctl, self.fk0_mtx,
                                           self.fk1_mtx, self.fk2_mtx,
                                           self.length0, self.length1,
                                           self.negate)

        pm.connectAttr(self.blend_att, o_node + ".blend")
        pm.connectAttr(self.roll_att, o_node + ".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")
        # update issue on effector scale interpol, disconnect for stability
        pm.disconnectAttr(self.eff_npo.scale)
        # auto upvector -------------------------------------

        if self.negate:
            o_node = applyop.aimCns(self.upv_auv,
                                    self.ik_ctl,
                                    axis="-xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.upv_auv,
                                    maintainOffset=False)
        else:
            o_node = applyop.aimCns(self.upv_auv,
                                    self.ik_ctl,
                                    axis="xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.upv_auv,
                                    maintainOffset=False)

        o_node = applyop.gear_mulmatrix_op(
            self.upv_auv.attr("worldMatrix"),
            self.upv_mtx.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pb_node = pm.createNode("pairBlend")
        pb_node.attr("rotInterpolation").set(1)
        pm.connectAttr(dm_node + ".outputTranslate", pb_node + ".inTranslate2")
        pm.connectAttr(dm_node + ".outputRotate", pb_node + ".inRotate2")
        pm.connectAttr(pb_node + ".outRotate", self.upv_mtx.attr("rotate"))
        pm.connectAttr(pb_node + ".outTranslate",
                       self.upv_mtx.attr("translate"))
        pm.connectAttr(self.auv_att, pb_node + ".weight")

        # fk0 mtx connection
        o_node = applyop.gear_mulmatrix_op(
            self.fk0_roll_ctl.attr("worldMatrix"),
            self.fk0_mtx.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.fk0_mtx.attr("translate"))
        pm.connectAttr(dm_node + ".outputRotate", self.fk0_mtx.attr("rotate"))
        # fk1 loc connect to fk1 ref @ pos and rot, not scl to avoid shearing
        o_node = applyop.gear_mulmatrix_op(
            self.fk1_ref.attr("worldMatrix"),
            self.fk1_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.fk1_loc.attr("translate"))
        pm.connectAttr(dm_node + ".outputRotate", self.fk1_loc.attr("rotate"))
        # fk1 mtx orient cns to fk1 roll
        pm.connectAttr(self.fk1_roll_ctl.attr("rotate"),
                       self.fk1_mtx.attr("rotate"))
        # fk2_loc position constraint to effector------------------------
        o_node = applyop.gear_mulmatrix_op(
            self.eff_npo.attr("worldMatrix"),
            self.fk2_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.fk2_loc.attr("translate"))
        # fk2_loc rotation constraint to bone1 (bugfixed) --------------
        o_node = applyop.gear_mulmatrix_op(
            self.bone1.attr("worldMatrix"),
            self.fk2_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.fk2_loc.attr("rotate"))

        # hand ikfk blending from fk ref to ik ref (serious bugfix)--------
        o_node = applyop.gear_mulmatrix_op(
            self.fk_ref.attr("worldMatrix"),
            self.eff_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pb_node = pm.createNode("pairBlend")
        pb_node.attr("rotInterpolation").set(1)
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", pb_node + ".inRotate1")
        pm.connectAttr(self.blend2_att, pb_node + ".weight")
        pm.connectAttr(pb_node + ".outRotate", self.eff_loc.attr("rotate"))
        o_node = applyop.gear_mulmatrix_op(
            self.ik_ref.attr("worldMatrix"),
            self.eff_loc.attr("parentInverseMatrix"))
        dm_node1 = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node1 + ".inputMatrix")
        pm.connectAttr(dm_node1 + ".outputRotate", pb_node + ".inRotate2")
        # use blendcolors to blend scale
        bc_node = pm.createNode("blendColors")
        pm.connectAttr(self.blend_att, bc_node + ".blender")
        pm.connectAttr(dm_node + ".outputScale", bc_node + ".color2")
        pm.connectAttr(dm_node1 + ".outputScale", bc_node + ".color1")
        pm.connectAttr(bc_node + ".output", self.eff_loc.attr("scale"))

        # Twist references ---------------------------------
        pm.connectAttr(self.mid_ctl.attr("translate"),
                       self.tws1_npo.attr("translate"))
        pm.connectAttr(self.mid_ctl.attr("rotate"),
                       self.tws1_npo.attr("rotate"))
        pm.connectAttr(self.mid_ctl.attr("scale"), self.tws1_npo.attr("scale"))

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.tws3_npo.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")

        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws3_npo.attr("translate"))

        pm.connectAttr(dm_node + ".outputRotate", self.tws3_npo.attr("rotate"))

        attribute.setRotOrder(self.tws3_rot, "XYZ")

        # elbow thickness connection
        if self.negate:
            o_node = node.createMulNode(
                [self.elbow_thickness_att, self.elbow_thickness_att],
                [0.5, -0.5, 0],
                [self.tws1_loc + ".translateX", self.tws2_loc + ".translateX"])
        else:
            o_node = node.createMulNode(
                [self.elbow_thickness_att, self.elbow_thickness_att],
                [-0.5, 0.5, 0],
                [self.tws1_loc + ".translateX", self.tws2_loc + ".translateX"])

        # connect both tws1 and tws2  (mid tws)
        self.tws0_rot.setAttr("sx", .001)
        self.tws3_rot.setAttr("sx", .001)

        add_node = node.createAddNode(self.roundness0_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        add_node = node.createAddNode(self.roundness1_att, .001)
        pm.connectAttr(add_node + ".output", self.tws2_rot.attr("sx"))

        pm.connectAttr(self.armpit_roll_att, self.tws0_rot + ".rotateX")

        # Roll Shoulder--use aimconstraint withour uovwctor to solve
        # the stable twist

        if self.negate:
            o_node = applyop.aimCns(self.tws0_loc,
                                    self.mid_ctl,
                                    axis="-xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.tws0_npo,
                                    maintainOffset=False)
        else:
            o_node = applyop.aimCns(self.tws0_loc,
                                    self.mid_ctl,
                                    axis="xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.tws0_npo,
                                    maintainOffset=False)

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_npo)
        distB_node = node.createDistNode(self.tws1_npo, self.tws3_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        # Divisions ----------------------------------------
        # div mid constraint to mid ctl
        o_node = applyop.gear_mulmatrix_op(
            self.mid_ctl.attr("worldMatrix"),
            self.div_mid.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.div_mid.attr("translate"))
        pm.connectAttr(dm_node + ".outputRotate", self.div_mid.attr("rotate"))

        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        # linear scaling percentage (1) to effector (2) to elbow
        scl_1_perc = []
        scl_2_perc = []

        for i, div_cnsUp in enumerate(self.div_cnsUp):

            if i < (self.settings["div0"] + 1):
                perc = i / (self.settings["div0"] + 1.0)
            elif i < (self.settings["div0"] + 2):
                perc = .95

            perc = max(.001, min(.99, perc))

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cnsUp, [self.tws1_rot, self.tws0_rot], 1 - perc, 20)

            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cnsUp, [self.tws0_rot, self.tws1_rot], perc, 20)

            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            scl_1_perc.append(perc / 2)
            scl_2_perc.append(perc)
        scl_1_perc.append(0.5)
        scl_2_perc.append(1)
        for i, div_cnsDn in enumerate(self.div_cnsDn):

            if i == (0):
                perc = .05
            elif i < (self.settings["div1"] + 1):
                perc = i / (self.settings["div1"] + 1.0)
            elif i < (self.settings["div1"] + 2):
                perc = .95

            perc = max(.001, min(.990, perc))

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cnsDn, [self.tws3_rot, self.tws2_rot], 1 - perc, 20)

            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cnsDn, [self.tws2_rot, self.tws3_rot], perc, 20)
            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            scl_1_perc.append(perc / 2 + 0.5)
            scl_2_perc.append(1 - perc)
        # Squash n Stretch
        for i, div_cns in enumerate(self.div_cns):
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")
            # get the first mult_node after sq op
            mult_node = pm.listHistory(o_node, future=True)[1]
            # linear blend effector scale
            bc_node = pm.createNode("blendColors")
            bc_node.setAttr("color2R", 1)
            bc_node.setAttr("color2G", 1)
            bc_node.setAttr("blender", scl_1_perc[i])
            pm.connectAttr(self.eff_loc.attr("scale"), bc_node + ".color1")
            # linear blend mid scale
            bc_node2 = pm.createNode("blendColors")
            bc_node2.setAttr("color2R", 1)
            bc_node2.setAttr("color2G", 1)
            bc_node2.setAttr("blender", scl_2_perc[i])
            pm.connectAttr(self.mid_ctl.attr("scale"), bc_node2 + ".color1")
            # mid_ctl scale * effector scale
            mult_node2 = pm.createNode("multiplyDivide")
            pm.connectAttr(bc_node2 + ".output", mult_node2 + ".input1")
            pm.connectAttr(bc_node + ".output", mult_node2 + ".input2")
            # plug to sq scale
            pm.connectAttr(mult_node2 + ".output", mult_node + ".input2")

        # match IK/FK ref
        pm.connectAttr(self.bone0.attr("rotate"),
                       self.match_fk0.attr("rotate"))
        pm.connectAttr(self.bone0.attr("translate"),
                       self.match_fk0.attr("translate"))
        pm.connectAttr(self.bone1.attr("rotate"),
                       self.match_fk1.attr("rotate"))
        pm.connectAttr(self.bone1.attr("translate"),
                       self.match_fk1.attr("translate"))

        return
Esempio n. 7
0
    def addOperators(self):

        # 1 bone chain Upv ref =====================================================================================
        self.ikHandleUpvRef = pri.addIkHandle(
            self.root, self.getName("ikHandleLegChainUpvRef"),
            self.armChainUpvRef, "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.armChainUpvRef[0], self.upv_cns, mo=True)

        # Visibilities -------------------------------------
        # fk
        fkvis_node = nod.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        if self.settings["ikTR"]:
            for shp in self.ikRot_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        att.setRotOrder(self.fk0_ctl, "XZY")
        att.setRotOrder(self.fk1_ctl, "XYZ")
        att.setRotOrder(self.fk2_ctl, "YZX")
        # att.setRotOrder(self.ik_ctl, "ZYX")
        att.setRotOrder(self.ik_ctl, "XYZ")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        node = aop.gear_ikfk2bone_op(out, self.root, self.ik_ref, self.upv_ctl,
                                     self.fk_ctl[0], self.fk_ctl[1],
                                     self.fk_ref, self.length0, self.length1,
                                     self.negate)

        if self.settings["ikTR"]:
            #connect the control inputs
            outEff_dm = node.listConnections(c=True)[-1][1]

            outEff_dm.attr("outputTranslate") >> self.ikRot_npo.attr(
                "translate")
            outEff_dm.attr("outputScale") >> self.ikRot_npo.attr("scale")
            dm_node = nod.createDecomposeMatrixNode(node.attr("outB"))
            dm_node.attr("outputRotate") >> self.ikRot_npo.attr("rotate")

            #rotation

            # intM_node = aop.gear_intmatrix_op(node.attr("outEff"), self.ikRot_ctl.attr("worldMatrix"), node.attr("blend"))
            # mulM_node = aop.gear_mulmatrix_op(intM_node.attr("output"), self.eff_loc.attr("parentInverseMatrix"))
            # dm_node = nod.createDecomposeMatrixNode(mulM_node.attr("output"))
            mulM_node = aop.gear_mulmatrix_op(
                self.ikRot_ctl.attr("worldMatrix"),
                self.eff_loc.attr("parentInverseMatrix"))
            intM_node = aop.gear_intmatrix_op(node.attr("outEff"),
                                              mulM_node.attr("output"),
                                              node.attr("blend"))
            dm_node = nod.createDecomposeMatrixNode(intM_node.attr("output"))
            dm_node.attr("outputRotate") >> self.eff_loc.attr("rotate")

        #scale: this fix the scalin popping issue
        intM_node = aop.gear_intmatrix_op(self.fk2_ctl.attr("worldMatrix"),
                                          self.ik_ctl.attr("worldMatrix"),
                                          node.attr("blend"))
        mulM_node = aop.gear_mulmatrix_op(
            intM_node.attr("output"), self.eff_loc.attr("parentInverseMatrix"))
        dm_node = nod.createDecomposeMatrixNode(mulM_node.attr("output"))
        dm_node.attr("outputScale") >> self.eff_loc.attr("scale")

        pm.connectAttr(self.blend_att, node + ".blend")
        pm.connectAttr(self.roll_att, node + ".roll")
        pm.connectAttr(self.scale_att, node + ".scaleA")
        pm.connectAttr(self.scale_att, node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, node + ".maxstretch")
        pm.connectAttr(self.slide_att, node + ".slide")
        pm.connectAttr(self.softness_att, node + ".softness")
        pm.connectAttr(self.reverse_att, node + ".reverse")

        # Twist references ---------------------------------

        pm.pointConstraint(self.mid_ctl, self.tws1_npo, maintainOffset=False)
        pm.scaleConstraint(self.mid_ctl, self.tws1_npo, maintainOffset=False)
        pm.orientConstraint(self.mid_ctl, self.tws1_npo, maintainOffset=False)

        node = aop.gear_mulmatrix_op(self.eff_loc.attr("worldMatrix"),
                                     self.root.attr("worldInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        node = aop.gear_mulmatrix_op(self.eff_loc.attr("worldMatrix"),
                                     self.tws2_rot.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        att.setRotOrder(self.tws2_rot, "XYZ")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_rot + ".rotate")

        self.tws0_rot.setAttr("sx", .001)
        self.tws2_rot.setAttr("sx", .001)

        add_node = nod.createAddNode(self.roundness_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        pm.connectAttr(self.armpit_roll_att, self.tws0_rot + ".rotateX")

        #Roll Shoulder
        aop.splineIK(self.getName("rollRef"),
                     self.rollRef,
                     parent=self.root,
                     cParent=self.bone0)

        # Volume -------------------------------------------
        distA_node = nod.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = nod.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = nod.createAddNode(distA_node + ".distance",
                                     distB_node + ".distance")
        div_node = nod.createDivNode(add_node + ".output",
                                     self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = nod.createDivNode(div_node + ".outputX",
                                      dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):

            if i < (self.settings["div0"] + 1):
                perc = i * .5 / (self.settings["div0"] + 1.0)
            elif i < (self.settings["div0"] + 2):
                perc = .49
            elif i < (self.settings["div0"] + 3):
                perc = .50
            elif i < (self.settings["div0"] + 4):
                perc = .51

            else:
                perc = .5 + (i - self.settings["div0"] -
                             3.0) * .5 / (self.settings["div1"] + 1.0)

            perc = max(.001, min(.990, perc))

            # Roll
            if self.negate:
                node = aop.gear_rollsplinekine_op(
                    div_cns, [self.tws2_rot, self.tws1_rot, self.tws0_rot],
                    1 - perc, 40)
            else:
                node = aop.gear_rollsplinekine_op(
                    div_cns, [self.tws0_rot, self.tws1_rot, self.tws2_rot],
                    perc, 40)

            pm.connectAttr(self.resample_att, node + ".resample")
            pm.connectAttr(self.absolute_att, node + ".absolute")

            # Squash n Stretch
            node = aop.gear_squashstretch2_op(div_cns, None,
                                              pm.getAttr(self.volDriver_att),
                                              "x")
            pm.connectAttr(self.volume_att, node + ".blend")
            pm.connectAttr(self.volDriver_att, node + ".driver")
            pm.connectAttr(self.st_att[i], node + ".stretch")
            pm.connectAttr(self.sq_att[i], node + ".squash")

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)

        return
Esempio n. 8
0
    def addOperators(self):

        # Visibilities -------------------------------------
        # fk
        fkvis_node = nod.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            connectAttr(self.blend_att, shp.attr("visibility"))

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        node = aop.gear_ikfk2bone_op(out, self.root, self.ik_ref, self.upv_ctl,
                                     self.fk_ctl[0], self.fk_ctl[1],
                                     self.fk_ref, self.length0, self.length1,
                                     self.negate)

        connectAttr(self.blend_att, node + ".blend")
        connectAttr(self.roll_att, node + ".roll")
        connectAttr(self.scale_att, node + ".scaleA")
        connectAttr(self.scale_att, node + ".scaleB")
        connectAttr(self.maxstretch_att, node + ".maxstretch")
        connectAttr(self.slide_att, node + ".slide")
        connectAttr(self.softness_att, node + ".softness")
        connectAttr(self.reverse_att, node + ".reverse")

        # Twist references ---------------------------------
        pointConstraint(self.root, self.tws0_loc, maintainOffset=True)
        aop.aimCns(self.tws0_loc, self.mid_ctl, self.n_sign + "xz", 2,
                   [0, 1, 0], self.root, False)

        pointConstraint(self.mid_ctl, self.tws1_loc, maintainOffset=False)
        scaleConstraint(self.mid_ctl, self.tws1_loc, maintainOffset=False)
        orientConstraint(self.mid_ctl, self.tws1_rot, maintainOffset=False)

        pointConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        scaleConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        orientConstraint(self.bone1, self.tws2_loc, maintainOffset=False)
        # orientConstraint(self.eff_loc, self.tws2_rot, maintainOffset=False)
        node = aop.gear_mulmatrix_op(self.eff_loc.attr("worldMatrix"),
                                     self.tws2_rot.attr("parentInverseMatrix"))
        dm_node = createNode("decomposeMatrix")
        connectAttr(node + ".output", dm_node + ".inputMatrix")
        connectAttr(dm_node + ".outputRotate", self.tws2_rot + ".rotate")
        # att.setRotOrder(self.tws2_rot, "YZX")

        self.tws0_loc.setAttr("sx", .001)
        self.tws2_loc.setAttr("sx", .001)

        add_node = nod.createAddNode(self.roundness_att, .001)
        connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        # Volume -------------------------------------------
        distA_node = nod.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = nod.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = nod.createAddNode(distA_node + ".distance",
                                     distB_node + ".distance")
        div_node = nod.createDivNode(add_node + ".output",
                                     self.root.attr("sx"))
        self.volDriver_att = div_node + ".outputX"

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):

            if i < (self.settings["div0"] + 1):
                perc = i * .5 / (self.settings["div0"] + 1.0)
            else:
                perc = .5 + (i - self.settings["div0"] -
                             1.0) * .5 / (self.settings["div1"] + 1.0)

            perc = max(.001, min(.999, perc))

            # Roll
            if self.negate:
                node = aop.gear_rollsplinekine_op(
                    div_cns, [self.tws2_rot, self.tws1_rot, self.tws0_rot],
                    1 - perc)
            else:
                node = aop.gear_rollsplinekine_op(
                    div_cns, [self.tws0_rot, self.tws1_rot, self.tws2_rot],
                    perc)

            connectAttr(self.resample_att, node + ".resample")
            connectAttr(self.absolute_att, node + ".absolute")

            # Squash n Stretch
            node = aop.gear_squashstretch2_op(div_cns, None,
                                              getAttr(self.volDriver_att), "x")
            connectAttr(self.volume_att, node + ".blend")
            connectAttr(self.volDriver_att, node + ".driver")
            connectAttr(self.st_att[i], node + ".stretch")
            connectAttr(self.sq_att[i], node + ".squash")

        return
Esempio n. 9
0
    def addOperators(self):

        # Visibilities -------------------------------------
        # fk
        fkvis_node = nod.createReverseNode(self.blend_att)
        
        for shp in self.fk0_ctl.getShapes():
            connectAttr(fkvis_node+".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            connectAttr(fkvis_node+".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            connectAttr(fkvis_node+".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            connectAttr(self.blend_att, shp.attr("visibility"))

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        node = aop.gear_ikfk2bone_op(out, self.root, self.ik_ref, self.upv_ctl, self.fk_ctl[0], self.fk_ctl[1], self.fk_ref, self.length0, self.length1, self.negate)

        connectAttr(self.blend_att, node+".blend")
        connectAttr(self.roll_att, node+".roll")
        connectAttr(self.scale_att, node+".scaleA")
        connectAttr(self.scale_att, node+".scaleB")
        connectAttr(self.maxstretch_att, node+".maxstretch")
        connectAttr(self.slide_att, node+".slide")
        connectAttr(self.softness_att, node+".softness")
        connectAttr(self.reverse_att, node+".reverse")

        # Twist references ---------------------------------
        pointConstraint(self.root, self.tws0_loc, maintainOffset=True)
        aop.aimCns(self.tws0_loc, self.mid_ctl, self.n_sign+"xz", 2, [0,1,0], self.root, False)

        pointConstraint(self.mid_ctl, self.tws1_loc, maintainOffset=False)
        scaleConstraint(self.mid_ctl, self.tws1_loc, maintainOffset=False)
        orientConstraint(self.mid_ctl, self.tws1_rot, maintainOffset=False)

        pointConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        scaleConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        orientConstraint(self.bone1, self.tws2_loc, maintainOffset=False) 
        # orientConstraint(self.eff_loc, self.tws2_rot, maintainOffset=False)
        node = aop.gear_mulmatrix_op(self.eff_loc.attr("worldMatrix"), self.tws2_rot.attr("parentInverseMatrix"))
        dm_node = createNode("decomposeMatrix")
        connectAttr(node+".output", dm_node+".inputMatrix")
        connectAttr(dm_node+".outputRotate", self.tws2_rot+".rotate")
        # att.setRotOrder(self.tws2_rot, "YZX")

        self.tws0_loc.setAttr("sx", .001)
        self.tws2_loc.setAttr("sx", .001)

        add_node = nod.createAddNode(self.roundness_att, .001)
        connectAttr(add_node+".output", self.tws1_rot.attr("sx"))

        # Volume -------------------------------------------
        distA_node = nod.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = nod.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = nod.createAddNode(distA_node+".distance", distB_node+".distance")
        div_node = nod.createDivNode(add_node+".output", self.root.attr("sx"))
        self.volDriver_att = div_node+".outputX"

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):

            if i < (self.settings["div0"]+1):
                perc = i*.5 / (self.settings["div0"]+1.0)
            else:
                perc = .5 + (i-self.settings["div0"]-1.0)*.5 / (self.settings["div1"]+1.0)

            perc = max(.001, min(.999, perc))

            # Roll
            if self.negate:
                node = aop.gear_rollsplinekine_op(div_cns, [self.tws2_rot, self.tws1_rot, self.tws0_rot], 1-perc)
            else:
                node = aop.gear_rollsplinekine_op(div_cns, [self.tws0_rot, self.tws1_rot, self.tws2_rot], perc)

            connectAttr(self.resample_att, node+".resample")
            connectAttr(self.absolute_att, node+".absolute")

            # Squash n Stretch
            node = aop.gear_squashstretch2_op(div_cns, None, getAttr(self.volDriver_att), "x")
            connectAttr(self.volume_att, node+".blend")
            connectAttr(self.volDriver_att, node+".driver")
            connectAttr(self.st_att[i], node+".stretch")
            connectAttr(self.sq_att[i], node+".squash")

        return