Esempio n. 1
0
            elif len(idx) == 1:
                code = codebook[idx]
            else:
                if prev_code is not None:
                    code = prev_code
                else:
                    code = codebook[0]
            arr[i] = code
            prev_code = code
        return arr

    print len(X)
    for i in [0, 3, 5, 8, 13]:
        lsf = reconstruct(lsf_tf.cluster_centers_, X[i][:, :n_lsf_clusters],
                          n_features)
        a = lsf_to_lpc(lsf)
        gain = reconstruct(gain_tf.cluster_centers_,
                           X[i][:, -n_gain_clusters:], 1)
        X_s = lpc_synthesis(a, gain, window_step=window_step)
        wavfile.write('orig_%i.wav' % i, fs, soundsc(X_s))

    model = test_rnnrbm(X, num_epochs=200)
    n_samples_to_gen = 5
    for i in range(n_samples_to_gen):
        g = model.generate()
        #f = open('sample_peach_pickle_rnndbn_%i.pkl' % i, 'w')
        #cPickle.dump(g,f)
        #f.close()
        lsf = reconstruct(lsf_tf.cluster_centers_, g[:, :n_lsf_clusters],
                          n_features)
        a = lsf_to_lpc(lsf)
Esempio n. 2
0
                code = codebook[idx]
            else:
                if prev_code is not None:
                    # If there are none active just use the previous
                    code = prev_code
                else:
                    # Very first sample is messed up... just pick one
                    code = codebook[0]
            arr[i] = code
            prev_code = code
        return arr

    for i in [0, 20, 40, 60, 80, 100]:
        lsf = reconstruct(lsf_tf.cluster_centers_, X[i][:, :n_lsf_clusters],
                          n_features)
        a = lsf_to_lpc(lsf)
        gain = reconstruct(gain_tf.cluster_centers_, X[i][:, -n_gain_clusters:],
                           1)
        X_s = lpc_synthesis(a, gain, window_step=window_step)
        wavfile.write('orig_%i.wav' % i, fs, soundsc(X_s))

    model = test_lstmrbm(X, num_epochs=200)
    n_samples_to_gen = 5
    for i in range(n_samples_to_gen):
        g = model.generate()
        lsf = reconstruct(lsf_tf.cluster_centers_, g[:, :n_lsf_clusters],
                          n_features)
        a = lsf_to_lpc(lsf)
        gain = reconstruct(gain_tf.cluster_centers_, g[:, -n_gain_clusters:],
                           1)
        X_s = lpc_synthesis(a, gain, window_step=window_step)