Esempio n. 1
0
def spectrum_per_label(vtk_file,
                       spectrum_size=10,
                       exclude_labels=[-1],
                       normalization='areaindex',
                       area_file='',
                       largest_segment=True,
                       verbose=False):
    """
    Compute Laplace-Beltrami spectrum per labeled region in a file.
    Parameters
    ----------
    vtk_file : string
        name of VTK surface mesh file containing index scalars (labels)
    spectrum_size : integer
        number of eigenvalues to be computed (the length of the spectrum)
    exclude_labels : list of integers
        labels to be excluded
    normalization : string
        the method used to normalize eigenvalues
        if None, no normalization is used
        if "area", use area of the 2D structure as in Reuter et al. 2006
        if "index", divide eigenvalue by index to account for linear trend
        if "areaindex", do both (default)
    area_file :  string (optional)
        name of VTK file with surface area scalar values
    largest_segment :  bool
        compute spectrum only for largest segment with a given label?
    verbose : bool
        print statements?
    Returns
    -------
    spectrum_lists : list of lists
        first eigenvalues for each label's Laplace-Beltrami spectrum
    label_list : list of integers
        list of unique labels for which spectra are obtained
    Examples
    --------
    >>> # Uncomment "if label==22:" below to run example:
    >>> # Spectrum for Twins-2-1 left postcentral (22) pial surface:
    >>> import numpy as np
    >>> from mindboggle.shapes.laplace_beltrami import spectrum_per_label
    >>> from mindboggle.mio.fetch_data import prep_tests
    >>> urls, fetch_data = prep_tests()
    >>> vtk_file = fetch_data(urls['left_freesurfer_labels'], '', '.vtk')
    >>> area_file = fetch_data(urls['left_area'], '', '.vtk')
    >>> spectrum_size = 6
    >>> exclude_labels = [0]  #[-1]
    >>> largest_segment = True
    >>> verbose = False
    >>> spectrum_lists, label_list = spectrum_per_label(vtk_file,
    ...     spectrum_size, exclude_labels, None, area_file, largest_segment,
    ...     verbose)
    >>> [np.float("{0:.{1}f}".format(x, 5)) for x in spectrum_lists[0]]
    [0.0, 0.00054, 0.00244, 0.00291, 0.00456, 0.00575]
    >>> label_list[0:10]
    [1029, 1005, 1011, 1021, 1008, 1025, 999, 1013, 1007, 1022]
    """
    from mindboggle.mio.vtks import read_vtk, read_scalars
    from mindboggle.guts.mesh import keep_faces, reindex_faces_points
    from mindboggle.shapes.laplace_beltrami import fem_laplacian,\
        spectrum_of_largest

    # Read VTK surface mesh file:
    points, indices, lines, faces, labels, scalar_names, npoints, \
        input_vtk = read_vtk(vtk_file)

    # Area file:
    if area_file:
        areas, u1 = read_scalars(area_file)
    else:
        areas = None

    # Loop through labeled regions:
    ulabels = []
    [
        ulabels.append(int(x)) for x in labels if x not in ulabels
        if x not in exclude_labels
    ]
    label_list = []
    spectrum_lists = []
    for label in ulabels:
        #if label == 22:
        #  print("DEBUG: COMPUTE FOR ONLY ONE LABEL")

        # Determine the indices per label:
        Ilabel = [i for i, x in enumerate(labels) if x == label]
        if verbose:
            print('{0} vertices for label {1}'.format(len(Ilabel), label))

        # Remove background faces:
        pick_faces = keep_faces(faces, Ilabel)
        pick_faces, pick_points, o1 = reindex_faces_points(pick_faces, points)

        # Compute Laplace-Beltrami spectrum for the label:
        if largest_segment:
            exclude_labels_inner = [-1]
            spectrum = spectrum_of_largest(pick_points, pick_faces,
                                           spectrum_size, exclude_labels_inner,
                                           normalization, areas, verbose)
        else:
            spectrum = fem_laplacian(pick_points, pick_faces, spectrum_size,
                                     normalization, verbose)

        # Append to a list of lists of spectra:
        spectrum_lists.append(spectrum)
        label_list.append(label)

    return spectrum_lists, label_list
Esempio n. 2
0
def write_average_face_values_per_label(input_indices_vtk,
                                        input_values_vtk='',
                                        area_file='',
                                        output_stem='',
                                        exclude_values=[-1],
                                        background_value=-1,
                                        verbose=False):
    """
    Write out a separate csv table file for each integer
    in (the first) scalar list of an input VTK file.
    Optionally write the values drawn from a second VTK file.

    Parameters
    ----------
    input_indices_vtk : string
        path of the input VTK file that contains indices as scalars
    input_values_vtk : string
        path of the input VTK file that contains values as scalars
    output_stem : string
        path and stem of the output VTK file
    exclude_values : list or array
        values to exclude
    background_value : integer or float
        background value in output VTK files
    scalar_name : string
        name of a lookup table of scalars values
    verbose : bool
        print statements?

    Examples
    --------
    >>> import os
    >>> from mindboggle.mio.tables import write_average_face_values_per_label
    >>> from mindboggle.mio.fetch_data import prep_tests
    >>> urls, fetch_data = prep_tests()
    >>> input_indices_vtk = fetch_data(urls['left_freesurfer_labels'], '', '.vtk')
    >>> input_values_vtk = fetch_data(urls['left_mean_curvature'], '', '.vtk')
    >>> area_file = fetch_data(urls['left_area'], '', '.vtk')
    >>> output_stem = 'labels_thickness'
    >>> exclude_values = [-1]
    >>> background_value = -1
    >>> verbose = False
    >>> write_average_face_values_per_label(input_indices_vtk,
    ...     input_values_vtk, area_file, output_stem, exclude_values,
    ...     background_value, verbose)

    View vtk file (skip test):

    >>> from mindboggle.mio.plots import plot_surfaces
    >>> example_vtk = os.path.join(os.getcwd(), output_stem + '0.vtk')
    >>> plot_surfaces(example_vtk) # doctest: +SKIP

    """
    import os
    import numpy as np
    import pandas as pd

    from mindboggle.mio.vtks import read_scalars, read_vtk, write_vtk
    from mindboggle.guts.mesh import keep_faces

    # Load VTK file:
    points, indices, lines, faces, scalars, scalar_names, npoints, \
        input_vtk = read_vtk(input_indices_vtk, True, True)
    if area_file:
        area_scalars, name = read_scalars(area_file, True, True)
    if verbose:
        print("Explode the scalar list in {0}".format(
            os.path.basename(input_indices_vtk)))
    if input_values_vtk != input_indices_vtk:
        if verbose:
            print("Explode the scalar list of values in {0} "
                  "with the scalar list of indices in {1}".format(
                      os.path.basename(input_values_vtk),
                      os.path.basename(input_indices_vtk)))

    # Loop through unique (non-excluded) scalar values:
    unique_scalars = [
        int(x) for x in np.unique(scalars) if x not in exclude_values
    ]
    for scalar in unique_scalars:

        keep_indices = [x for sublst in faces for x in sublst]
        new_faces = keep_faces(faces, keep_indices)

        # Create array and indices for scalar value:
        select_scalars = np.copy(scalars)
        select_scalars[scalars != scalar] = background_value
        scalar_indices = [
            i for i, x in enumerate(select_scalars) if x == scalar
        ]
        if verbose:
            print("  Scalar {0}: {1} vertices".format(scalar,
                                                      len(scalar_indices)))

        # --------------------------------------------------------------------
        # For each face, average vertex values:
        # --------------------------------------------------------------------
        output_table = os.path.join(os.getcwd(),
                                    output_stem + str(scalar) + '.csv')
        columns = []
        for face in new_faces:
            values = []
            for index in face:
                if area_file:
                    values.append(scalars[index] / area_scalars[index])
                else:
                    values.append(scalars[index])
            columns.append(np.mean(values))

        # ----------------------------------------------------------------
        # Write to table:
        # ----------------------------------------------------------------
        df = pd.DataFrame({'': columns})
        df.to_csv(output_table, index=False, encoding='utf-8')
        if not os.path.exists(output_table):
            raise IOError(output_table + " not found")
Esempio n. 3
0
def spectrum_per_label(vtk_file, spectrum_size=10, exclude_labels=[-1],
                       normalization='area', area_file='',
                       largest_segment=True, verbose=False):
    """
    Compute Laplace-Beltrami spectrum per labeled region in a file.

    Parameters
    ----------
    vtk_file : string
        name of VTK surface mesh file containing index scalars (labels)
    spectrum_size : integer
        number of eigenvalues to be computed (the length of the spectrum)
    exclude_labels : list of integers
        labels to be excluded
    normalization : string
        the method used to normalize eigenvalues ('area' or None)
        if "area", use area of the 2D structure as in Reuter et al. 2006
    area_file :  string (optional)
        name of VTK file with surface area scalar values
    largest_segment :  bool
        compute spectrum only for largest segment with a given label?
    verbose : bool
        print statements?

    Returns
    -------
    spectrum_lists : list of lists
        first eigenvalues for each label's Laplace-Beltrami spectrum
    label_list : list of integers
        list of unique labels for which spectra are obtained

    Examples
    --------
    >>> # Uncomment "if label==22:" below to run example:
    >>> # Spectrum for Twins-2-1 left postcentral (22) pial surface:
    >>> import numpy as np
    >>> from mindboggle.shapes.laplace_beltrami import spectrum_per_label
    >>> from mindboggle.mio.fetch_data import prep_tests
    >>> urls, fetch_data = prep_tests()
    >>> vtk_file = fetch_data(urls['left_freesurfer_labels'], '', '.vtk')
    >>> area_file = fetch_data(urls['left_area'], '', '.vtk')
    >>> spectrum_size = 6
    >>> exclude_labels = [0]  #[-1]
    >>> largest_segment = True
    >>> verbose = False
    >>> spectrum_lists, label_list = spectrum_per_label(vtk_file,
    ...     spectrum_size, exclude_labels, None, area_file, largest_segment,
    ...     verbose)
    >>> print(np.array_str(np.array(spectrum_lists[0][1::]),
    ...                    precision=5, suppress_small=True))
    [ 0.00054  0.00244  0.00291  0.00456  0.00575]
    >>> label_list[0:10]
    [1029, 1005, 1011, 1021, 1008, 1025, 999, 1013, 1007, 1022]

    """
    from mindboggle.mio.vtks import read_vtk, read_scalars
    from mindboggle.guts.mesh import keep_faces, reindex_faces_points
    from mindboggle.shapes.laplace_beltrami import fem_laplacian,\
        spectrum_of_largest

    # Read VTK surface mesh file:
    points, indices, lines, faces, labels, scalar_names, npoints, \
        input_vtk = read_vtk(vtk_file)

    # Area file:
    if area_file:
        areas, u1 = read_scalars(area_file)
    else:
        areas = None

    # Loop through labeled regions:
    ulabels = []
    [ulabels.append(int(x)) for x in labels if x not in ulabels
     if x not in exclude_labels]
    label_list = []
    spectrum_lists = []
    for label in ulabels:
      #if label == 22:
      #  print("DEBUG: COMPUTE FOR ONLY ONE LABEL")

        # Determine the indices per label:
        Ilabel = [i for i,x in enumerate(labels) if x == label]
        if verbose:
          print('{0} vertices for label {1}'.format(len(Ilabel), label))

        # Remove background faces:
        pick_faces = keep_faces(faces, Ilabel)
        pick_faces, pick_points, o1 = reindex_faces_points(pick_faces, points)

        # Compute Laplace-Beltrami spectrum for the label:
        if largest_segment:
            exclude_labels_inner = [-1]
            spectrum = spectrum_of_largest(pick_points, pick_faces,
                                           spectrum_size,
                                           exclude_labels_inner,
                                           normalization, areas, verbose)
        else:
            spectrum = fem_laplacian(pick_points, pick_faces, spectrum_size,
                                     normalization, verbose)

        # Append to a list of lists of spectra:
        spectrum_lists.append(spectrum)
        label_list.append(label)

    return spectrum_lists, label_list
Esempio n. 4
0
def zernike_moments_per_label(vtk_file,
                              order=10,
                              exclude_labels=[-1],
                              scale_input=True,
                              decimate_fraction=0,
                              decimate_smooth=25,
                              verbose=False):
    """
    Compute the Zernike moments per labeled region in a file.

    Optionally decimate the input mesh.

    Parameters
    ----------
    vtk_file : string
        name of VTK surface mesh file containing index scalars (labels)
    order : integer
        number of moments to compute
    exclude_labels : list of integers
        labels to be excluded
    scale_input : bool
        translate and scale each object so it is bounded by a unit sphere?
        (this is the expected input to zernike_moments())
    decimate_fraction : float
        fraction of mesh faces to remove for decimation (1 for no decimation)
    decimate_smooth : integer
        number of smoothing steps for decimation
    verbose : bool
        print statements?

    Returns
    -------
    descriptors_lists : list of lists of floats
        Zernike descriptors per label
    label_list : list of integers
        list of unique labels for which moments are computed

    Examples
    --------
    >>> # Zernike moments per label of a FreeSurfer-labeled left cortex.
    >>> # Uncomment "if label==22:" below to run example
    >>> # for left postcentral (22) pial surface:
    >>> import numpy as np
    >>> from mindboggle.shapes.zernike.zernike import zernike_moments_per_label
    >>> from mindboggle.mio.fetch_data import prep_tests
    >>> urls, fetch_data = prep_tests()
    >>> vtk_file = fetch_data(urls['left_freesurfer_labels'], '', '.vtk')
    >>> order = 3
    >>> exclude_labels = [-1]
    >>> scale_input = True
    >>> verbose = False
    >>> descriptors_lists, label_list = zernike_moments_per_label(vtk_file,
    ...     order, exclude_labels, scale_input, verbose)
    >>> label_list[0:10]
    [999, 1001, 1002, 1003, 1005, 1006, 1007, 1008, 1009, 1010]
    >>> print(np.array_str(np.array(descriptors_lists[0]),
    ...                    precision=5, suppress_small=True))
    [ 0.00587  0.01143  0.0031   0.00881  0.00107  0.00041]
    >>> print(np.array_str(np.array(descriptors_lists[1]),
    ...                    precision=5, suppress_small=True))
    [ 0.00004  0.00009  0.00003  0.00009  0.00002  0.00001]
    >>> print(np.array_str(np.array(descriptors_lists[2]),
    ...                    precision=5, suppress_small=True))
    [ 0.00144  0.00232  0.00128  0.00304  0.00084  0.00051]
    >>> print(np.array_str(np.array(descriptors_lists[3]),
    ...                    precision=5, suppress_small=True))
    [ 0.00393  0.006    0.00371  0.00852  0.00251  0.00153]
    >>> print(np.array_str(np.array(descriptors_lists[4]),
    ...                    precision=5, suppress_small=True))
    [ 0.00043  0.0003   0.00095  0.00051  0.00115  0.00116]

    """
    import numpy as np
    from mindboggle.mio.vtks import read_vtk
    from mindboggle.guts.mesh import keep_faces
    from mindboggle.shapes.zernike.zernike import zernike_moments

    min_points_faces = 4

    # ------------------------------------------------------------------------
    # Read VTK surface mesh file:
    # ------------------------------------------------------------------------
    points, indices, lines, faces, labels, scalar_names, npoints, \
            input_vtk = read_vtk(vtk_file)

    # ------------------------------------------------------------------------
    # Loop through labeled regions:
    # ------------------------------------------------------------------------
    ulabels = [x for x in np.unique(labels) if x not in exclude_labels]
    label_list = []
    descriptors_lists = []
    for label in ulabels:
        #if label == 1022:  # 22:
        #    print("DEBUG: COMPUTE FOR ONLY ONE LABEL")

        # --------------------------------------------------------------------
        # Determine the indices per label:
        # --------------------------------------------------------------------
        Ilabel = [i for i, x in enumerate(labels) if x == label]
        if verbose:
            print('  {0} vertices for label {1}'.format(len(Ilabel), label))

        if len(Ilabel) > min_points_faces:

            # ----------------------------------------------------------------
            # Remove background faces:
            # ----------------------------------------------------------------
            pick_faces = keep_faces(faces, Ilabel)
            if len(pick_faces) > min_points_faces:

                # ------------------------------------------------------------
                # Compute Zernike moments for the label:
                # ------------------------------------------------------------
                descriptors = zernike_moments(points, pick_faces, order,
                                              scale_input, decimate_fraction,
                                              decimate_smooth, verbose)

                # ------------------------------------------------------------
                # Append to a list of lists of spectra:
                # ------------------------------------------------------------
                descriptors_lists.append(descriptors)
                label_list.append(label)

    return descriptors_lists, label_list
Esempio n. 5
0
def write_average_face_values_per_label(input_indices_vtk,
        input_values_vtk='', area_file='', output_stem='',
        exclude_values=[-1], background_value=-1, verbose=False):
    """
    Write out a separate VTK file for each integer
    in (the first) scalar list of an input VTK file.
    Optionally write the values drawn from a second VTK file.

    Parameters
    ----------
    input_indices_vtk : string
        path of the input VTK file that contains indices as scalars
    input_values_vtk : string
        path of the input VTK file that contains values as scalars
    output_stem : string
        path and stem of the output VTK file
    exclude_values : list or array
        values to exclude
    background_value : integer or float
        background value in output VTK files
    scalar_name : string
        name of a lookup table of scalars values
    verbose : bool
        print statements?

    Examples
    --------
    >>> import os
    >>> from mindboggle.mio.tables import write_average_face_values_per_label
    >>> from mindboggle.mio.fetch_data import prep_tests
    >>> urls, fetch_data = prep_tests()
    >>> input_indices_vtk = fetch_data(urls['left_freesurfer_labels'])
    >>> input_values_vtk = fetch_data(urls['left_mean_curvature'])
    >>> area_file = fetch_data(urls['left_area'])
    >>> output_stem = 'labels_thickness'
    >>> exclude_values = [-1]
    >>> background_value = -1
    >>> verbose = False
    >>> write_average_face_values_per_label(input_indices_vtk,
    ...     input_values_vtk, area_file, output_stem, exclude_values,
    ...     background_value, verbose)

    View vtk file (skip test):

    >>> from mindboggle.mio.plots import plot_surfaces
    >>> example_vtk = os.path.join(os.getcwd(), output_stem + '0.vtk')
    >>> plot_surfaces(example_vtk) # doctest: +SKIP

    """
    import os
    import numpy as np
    import pandas as pd

    from mindboggle.mio.vtks import read_scalars, read_vtk, write_vtk
    from mindboggle.guts.mesh import keep_faces

    # Load VTK file:
    points, indices, lines, faces, scalars, scalar_names, npoints, \
        input_vtk = read_vtk(input_indices_vtk, True, True)
    if area_file:
        area_scalars, name = read_scalars(area_file, True, True)
    if verbose:
        print("Explode the scalar list in {0}".
            format(os.path.basename(input_indices_vtk)))
    if input_values_vtk != input_indices_vtk:
        if verbose:
            print("Explode the scalar list of values in {0} "
                  "with the scalar list of indices in {1}".
                format(os.path.basename(input_values_vtk),
                       os.path.basename(input_indices_vtk)))

    # Loop through unique (non-excluded) scalar values:
    unique_scalars = [int(x) for x in np.unique(scalars)
                      if x not in exclude_values]
    for scalar in unique_scalars:

        keep_indices = [x for sublst in faces for x in sublst]
        new_faces = keep_faces(faces, keep_indices)

        # Create array and indices for scalar value:
        select_scalars = np.copy(scalars)
        select_scalars[scalars != scalar] = background_value
        scalar_indices = [i for i,x in enumerate(select_scalars) if x==scalar]
        if verbose:
            print("  Scalar {0}: {1} vertices".format(scalar,
                                                      len(scalar_indices)))

        #---------------------------------------------------------------------
        # For each face, average vertex values:
        #---------------------------------------------------------------------
        output_table = os.path.join(os.getcwd(),
                                    output_stem+str(scalar)+'.csv')
        columns = []
        for face in new_faces:
            values = []
            for index in face:
                if area_file:
                    values.append(scalars[index] / area_scalars[index])
                else:
                    values.append(scalars[index])
            columns.append(np.mean(values))

        #-----------------------------------------------------------------
        # Write to table:
        #-----------------------------------------------------------------
        df = pd.DataFrame({'': columns})
        df.to_csv(output_table, index=False)
        if not os.path.exists(output_table):
            raise IOError(output_table + " not found")
Esempio n. 6
0
def zernike_moments_per_label(vtk_file, order=10, exclude_labels=[-1],
                              scale_input=True, decimate_fraction=0,
                              decimate_smooth=25, verbose=False):
    """
    Compute the Zernike moments per labeled region in a file.

    Optionally decimate the input mesh.

    Parameters
    ----------
    vtk_file : string
        name of VTK surface mesh file containing index scalars (labels)
    order : integer
        number of moments to compute
    exclude_labels : list of integers
        labels to be excluded
    scale_input : bool
        translate and scale each object so it is bounded by a unit sphere?
        (this is the expected input to zernike_moments())
    decimate_fraction : float
        fraction of mesh faces to remove for decimation (1 for no decimation)
    decimate_smooth : integer
        number of smoothing steps for decimation
    verbose : bool
        print statements?

    Returns
    -------
    descriptors_lists : list of lists of floats
        Zernike descriptors per label
    label_list : list of integers
        list of unique labels for which moments are computed

    Examples
    --------
    >>> # Zernike moments per label of a FreeSurfer-labeled left cortex.
    >>> # Uncomment "if label==22:" below to run example
    >>> # for left postcentral (22) pial surface:
    >>> import numpy as np
    >>> from mindboggle.shapes.zernike.zernike import zernike_moments_per_label
    >>> from mindboggle.mio.fetch_data import prep_tests
    >>> urls, fetch_data = prep_tests()
    >>> vtk_file = fetch_data(urls['left_freesurfer_labels'])
    >>> order = 3
    >>> exclude_labels = [-1]
    >>> scale_input = True
    >>> verbose = False
    >>> descriptors_lists, label_list = zernike_moments_per_label(vtk_file,
    ...     order, exclude_labels, scale_input, verbose)
    >>> label_list[0:10]
    [999, 1001, 1002, 1003, 1005, 1006, 1007, 1008, 1009, 1010]
    >>> print(np.array_str(np.array(descriptors_lists[0]),
    ...                    precision=5, suppress_small=True))
    [ 0.00587  0.01143  0.0031   0.00881  0.00107  0.00041]
    >>> print(np.array_str(np.array(descriptors_lists[1]),
    ...                    precision=5, suppress_small=True))
    [ 0.00004  0.00009  0.00003  0.00009  0.00002  0.00001]
    >>> print(np.array_str(np.array(descriptors_lists[2]),
    ...                    precision=5, suppress_small=True))
    [ 0.00144  0.00232  0.00128  0.00304  0.00084  0.00051]
    >>> print(np.array_str(np.array(descriptors_lists[3]),
    ...                    precision=5, suppress_small=True))
    [ 0.00393  0.006    0.00371  0.00852  0.00251  0.00153]
    >>> print(np.array_str(np.array(descriptors_lists[4]),
    ...                    precision=5, suppress_small=True))
    [ 0.00043  0.0003   0.00095  0.00051  0.00115  0.00116]

    """
    import numpy as np
    from mindboggle.mio.vtks import read_vtk
    from mindboggle.guts.mesh import keep_faces
    from mindboggle.shapes.zernike.zernike import zernike_moments

    min_points_faces = 4

    #-------------------------------------------------------------------------
    # Read VTK surface mesh file:
    #-------------------------------------------------------------------------
    points, indices, lines, faces, labels, scalar_names, npoints, \
            input_vtk = read_vtk(vtk_file)

    #-------------------------------------------------------------------------
    # Loop through labeled regions:
    #-------------------------------------------------------------------------
    ulabels = [x for x in np.unique(labels) if x not in exclude_labels]
    label_list = []
    descriptors_lists = []
    for label in ulabels:
      #if label == 1022:  # 22:
      #    print("DEBUG: COMPUTE FOR ONLY ONE LABEL")

        #---------------------------------------------------------------------
        # Determine the indices per label:
        #---------------------------------------------------------------------
        Ilabel = [i for i,x in enumerate(labels) if x == label]
        if verbose:
          print('  {0} vertices for label {1}'.format(len(Ilabel), label))

        if len(Ilabel) > min_points_faces:

            #-----------------------------------------------------------------
            # Remove background faces:
            #-----------------------------------------------------------------
            pick_faces = keep_faces(faces, Ilabel)
            if len(pick_faces) > min_points_faces:

                #-------------------------------------------------------------
                # Compute Zernike moments for the label:
                #-------------------------------------------------------------
                descriptors = zernike_moments(points, pick_faces,
                                              order, scale_input,
                                              decimate_fraction,
                                              decimate_smooth, verbose)

                #-------------------------------------------------------------
                # Append to a list of lists of spectra:
                #-------------------------------------------------------------
                descriptors_lists.append(descriptors)
                label_list.append(label)

    return descriptors_lists, label_list
Esempio n. 7
0
def plot_mask_surface(vtk_file,
                      mask_file='',
                      nonmask_value=-1,
                      masked_output='',
                      remove_nonmask=False,
                      program='vtkviewer',
                      use_colormap=False,
                      colormap_file='',
                      background_value=-1):
    """
    Use vtkviewer or mayavi2 to visualize VTK surface mesh data.

    If a mask_file is provided, a temporary masked file is saved,
    and it is this file that is viewed.

    If using vtkviewer, optionally provide colormap file
    or set $COLORMAP environment variable.

    Parameters
    ----------
    vtk_file : string
        name of VTK surface mesh file
    mask_file : string
        name of VTK surface mesh file to mask vtk_file vertices
    nonmask_value : integer
        nonmask (usually background) value
    masked_output : string
        temporary masked output file name
    remove_nonmask : bool
        remove vertices that are not in mask? (otherwise assign nonmask_value)
    program : string {'vtkviewer', 'mayavi2'}
        program to visualize VTK file
    use_colormap : bool
        use Paraview-style XML colormap file set by $COLORMAP env variable?
    colormap_file : string
        use colormap in given file if use_colormap==True?  if empty and
        use_colormap==True, use file set by $COLORMAP environment variable
    background_value : integer or float
        background value

    Examples
    --------
    >>> import os
    >>> from mindboggle.mio.plots import plot_mask_surface
    >>> from mindboggle.mio.fetch_data import prep_tests
    >>> urls, fetch_data = prep_tests()
    >>> vtk_file = fetch_data(urls['freesurfer_labels'], '', '.vtk')
    >>> os.rename(vtk_file, vtk_file + '.nii.gz')
    >>> vtk_file = vtk_file + '.nii.gz'
    >>> mask_file = ''
    >>> nonmask_value = 0 #-1
    >>> masked_output = ''
    >>> remove_nonmask = True
    >>> program = 'vtkviewer'
    >>> use_colormap = True
    >>> colormap_file = ''
    >>> background_value = -1
    >>> plot_mask_surface(vtk_file, mask_file, nonmask_value, masked_output,
    ...     remove_nonmask, program, use_colormap, colormap_file,
    ...     background_value) # doctest: +SKIP

    """
    import os
    import numpy as np

    from mindboggle.guts.mesh import keep_faces, reindex_faces_points
    from mindboggle.guts.utilities import execute
    from mindboggle.mio.plots import plot_surfaces
    from mindboggle.mio.vtks import read_scalars, rewrite_scalars, \
                                        read_vtk, write_vtk

    # ------------------------------------------------------------------------
    # Filter mesh with non-background values from a second (same-size) mesh:
    # ------------------------------------------------------------------------
    if mask_file:
        mask, name = read_scalars(mask_file, True, True)
        if not masked_output:
            masked_output = os.path.join(os.getcwd(), 'temp.vtk')
        file_to_plot = masked_output

        # --------------------------------------------------------------------
        # Remove nonmask-valued vertices:
        # --------------------------------------------------------------------
        if remove_nonmask:
            # ----------------------------------------------------------------
            # Load VTK files:
            # ----------------------------------------------------------------
            points, indices, lines, faces, scalars, scalar_names, npoints, \
                input_vtk = read_vtk(vtk_file, True, True)
            # ----------------------------------------------------------------
            # Find mask indices, remove nonmask faces, and reindex:
            # ----------------------------------------------------------------
            Imask = [i for i, x in enumerate(mask) if x != nonmask_value]
            mask_faces = keep_faces(faces, Imask)
            mask_faces, points, \
            original_indices = reindex_faces_points(mask_faces, points)
            # ----------------------------------------------------------------
            # Write VTK file with scalar values:
            # ----------------------------------------------------------------
            if np.ndim(scalars) == 1:
                scalar_type = type(scalars[0]).__name__
            elif np.ndim(scalars) == 2:
                scalar_type = type(scalars[0][0]).__name__
            else:
                print("Undefined scalar type!")
            write_vtk(file_to_plot,
                      points, [], [],
                      mask_faces,
                      scalars[original_indices].tolist(),
                      scalar_names,
                      scalar_type=scalar_type)
        else:
            scalars, name = read_scalars(vtk_file, True, True)
            scalars[mask == nonmask_value] = nonmask_value
            rewrite_scalars(vtk_file, file_to_plot, scalars, ['scalars'], [],
                            background_value)
    else:
        file_to_plot = vtk_file

    # ------------------------------------------------------------------------
    # Display with vtkviewer.py:
    # ------------------------------------------------------------------------
    if program == 'vtkviewer':
        plot_surfaces(file_to_plot,
                      use_colormap=use_colormap,
                      colormap_file=colormap_file)
    # ------------------------------------------------------------------------
    # Display with mayavi2:
    # ------------------------------------------------------------------------
    elif program == 'mayavi2':
        cmd = ["mayavi2", "-d", file_to_plot, "-m", "Surface", "&"]
        execute(cmd, 'os')
Esempio n. 8
0
def evaluate_deep_features(features_file,
                           labels_file,
                           sulci_file='',
                           hemi='',
                           excludeIDs=[-1],
                           output_vtk_name='',
                           verbose=True):
    """
    Evaluate deep surface features by computing the minimum distance from each
    label border vertex to all of the feature vertices in the same sulcus,
    and from each feature vertex to all of the label border vertices in the
    same sulcus.  The label borders run along the deepest parts of sulci
    and correspond to fundi in the DKT cortical labeling protocol.

    Parameters
    ----------
    features_file : string
        VTK surface file with feature numbers for vertex scalars
    labels_file : string
        VTK surface file with label numbers for vertex scalars
    sulci_file : string
        VTK surface file with sulcus numbers for vertex scalars
    excludeIDs : list of integers
        feature/sulcus/label IDs to exclude (background set to -1)
    output_vtk_name : bool
        if not empty, output a VTK file beginning with output_vtk_name that
        contains a surface with mean distances as scalars
    verbose : bool
        print mean distances to standard output?

    Returns
    -------
    feature_to_border_mean_distances : numpy array [number of features x 1]
        mean distance from each feature to sulcus label border
    feature_to_border_sd_distances : numpy array [number of features x 1]
        standard deviations of feature-to-border distances
    feature_to_border_distances_vtk : string
        VTK surface file containing feature-to-border distances
    border_to_feature_mean_distances : numpy array [number of features x 1]
        mean distances from each sulcus label border to feature
    border_to_feature_sd_distances : numpy array [number of features x 1]
        standard deviations of border-to-feature distances
    border_to_feature_distances_vtk : string
        VTK surface file containing border-to-feature distances

    """
    import os
    import sys
    import numpy as np
    from mindboggle.mio.vtks import read_vtk, read_scalars, write_vtk
    from mindboggle.guts.mesh import find_neighbors, keep_faces
    from mindboggle.guts.segment import extract_borders
    from mindboggle.guts.compute import source_to_target_distances
    from mindboggle.mio.labels import DKTprotocol

    dkt = DKTprotocol()
    # ------------------------------------------------------------------------
    # Load labels, features, and sulci:
    # ------------------------------------------------------------------------
    points, indices, lines, faces, labels, scalar_names, npoints, \
    input_vtk = read_vtk(labels_file, True, True)
    features, name = read_scalars(features_file, True, True)
    if sulci_file:
        sulci, name = read_scalars(sulci_file, True, True)
        # List of indices to sulcus vertices:
        sulcus_indices = [
            i for i, x in enumerate(sulci) if x not in excludeIDs
        ]
        segmentIDs = sulci
        sulcus_faces = keep_faces(faces, sulcus_indices)
    else:
        sulcus_indices = list(range(len(labels)))
        segmentIDs = []
        sulcus_faces = faces

    # ------------------------------------------------------------------------
    # Prepare neighbors, label pairs, border IDs, and outputs:
    # ------------------------------------------------------------------------
    # Calculate neighbor lists for all points:
    print('Find neighbors for all vertices...')
    neighbor_lists = find_neighbors(faces, npoints)

    # Find label border points in any of the sulci:
    print('Find label border points in any of the sulci...')
    border_indices, border_label_tuples, unique_border_label_tuples = \
        extract_borders(sulcus_indices, labels, neighbor_lists,
                        ignore_values=[], return_label_pairs=True)
    if not len(border_indices):
        sys.exit('There are no label border points!')

    # Initialize an array of label border IDs
    # (label border vertices that define sulci in the labeling protocol):
    print('Build an array of label border IDs...')
    label_borders = -1 * np.ones(npoints)

    if hemi == 'lh':
        nsulcus_lists = len(dkt.left_sulcus_label_pair_lists)
    else:
        nsulcus_lists = len(dkt.right_sulcus_label_pair_lists)
    feature_to_border_mean_distances = -1 * np.ones(nsulcus_lists)
    feature_to_border_sd_distances = -1 * np.ones(nsulcus_lists)
    border_to_feature_mean_distances = -1 * np.ones(nsulcus_lists)
    border_to_feature_sd_distances = -1 * np.ones(nsulcus_lists)
    feature_to_border_distances_vtk = ''
    border_to_feature_distances_vtk = ''

    # ------------------------------------------------------------------------
    # Loop through sulci:
    # ------------------------------------------------------------------------
    # For each list of sorted label pairs (corresponding to a sulcus):
    for isulcus, label_pairs in enumerate(dkt.sulcus_label_pair_lists):

        # Keep the border points with label pair labels:
        label_pair_border_indices = [
            x for i, x in enumerate(border_indices)
            if np.unique(border_label_tuples[i]).tolist() in label_pairs
        ]

        # Store the points as sulcus IDs in the border IDs array:
        if label_pair_border_indices:
            label_borders[label_pair_border_indices] = isulcus

    if len(np.unique(label_borders)) > 1:

        # --------------------------------------------------------------------
        # Construct a feature-to-border distance matrix and VTK file:
        # --------------------------------------------------------------------
        # Construct a distance matrix:
        print('Construct a feature-to-border distance matrix...')
        sourceIDs = features
        targetIDs = label_borders
        distances, distance_matrix = source_to_target_distances(
            sourceIDs, targetIDs, points, segmentIDs, excludeIDs)

        # Compute mean distances for each feature:
        nfeatures = min(np.shape(distance_matrix)[1], nsulcus_lists)
        for ifeature in range(nfeatures):
            feature_distances = [
                x for x in distance_matrix[:, ifeature] if x != -1
            ]
            feature_to_border_mean_distances[ifeature] = \
                np.mean(feature_distances)
            feature_to_border_sd_distances[ifeature] = \
                np.std(feature_distances)

        if verbose:
            print('Feature-to-border mean distances:')
            print(feature_to_border_mean_distances)
            print('Feature-to-border standard deviations of distances:')
            print(feature_to_border_sd_distances)

        # Write resulting feature-label border distances to VTK file:
        if output_vtk_name:
            feature_to_border_distances_vtk = os.path.join(
                os.getcwd(),
                output_vtk_name + '_feature_to_border_mean_distances.vtk')
            print('Write feature-to-border distances to {0}...'.format(
                feature_to_border_distances_vtk))
            write_vtk(feature_to_border_distances_vtk, points, [], [],
                      sulcus_faces, [distances],
                      ['feature-to-border_distances'], 'float')

        # --------------------------------------------------------------------
        # Construct a border-to-feature distance matrix and VTK file:
        # --------------------------------------------------------------------
        # Construct a distance matrix:
        print('Construct a border-to-feature distance matrix...')
        sourceIDs = label_borders
        targetIDs = features
        distances, distance_matrix = source_to_target_distances(
            sourceIDs, targetIDs, points, segmentIDs, excludeIDs)

        # Compute mean distances for each feature:
        nfeatures = min(np.shape(distance_matrix)[1], nsulcus_lists)
        for ifeature in range(nfeatures):
            border_distances = [
                x for x in distance_matrix[:, ifeature] if x != -1
            ]
            border_to_feature_mean_distances[ifeature] = \
                np.mean(border_distances)
            border_to_feature_sd_distances[ifeature] = \
                np.std(border_distances)

        if verbose:
            print('border-to-feature mean distances:')
            print(border_to_feature_mean_distances)
            print('border-to-feature standard deviations of distances:')
            print(border_to_feature_sd_distances)

        # Write resulting feature-label border distances to VTK file:
        if output_vtk_name:
            border_to_feature_distances_vtk = os.path.join(
                os.getcwd(),
                output_vtk_name + '_border_to_feature_mean_distances.vtk')
            print('Write border-to-feature distances to {0}...'.format(
                border_to_feature_distances_vtk))
            write_vtk(border_to_feature_distances_vtk, points, [], [],
                      sulcus_faces, [distances],
                      ['border-to-feature_distances'], 'float')

    # ------------------------------------------------------------------------
    # Return outputs:
    # ------------------------------------------------------------------------
    return feature_to_border_mean_distances, feature_to_border_sd_distances,\
           feature_to_border_distances_vtk,\
           border_to_feature_mean_distances, border_to_feature_sd_distances,\
           border_to_feature_distances_vtk
Esempio n. 9
0
def evaluate_deep_features(features_file, labels_file, sulci_file='', hemi='',
                           excludeIDs=[-1], output_vtk_name='', verbose=True):
    """
    Evaluate deep surface features by computing the minimum distance from each
    label border vertex to all of the feature vertices in the same sulcus,
    and from each feature vertex to all of the label border vertices in the
    same sulcus.  The label borders run along the deepest parts of sulci
    and correspond to fundi in the DKT cortical labeling protocol.

    Parameters
    ----------
    features_file : string
        VTK surface file with feature numbers for vertex scalars
    labels_file : string
        VTK surface file with label numbers for vertex scalars
    sulci_file : string
        VTK surface file with sulcus numbers for vertex scalars
    excludeIDs : list of integers
        feature/sulcus/label IDs to exclude (background set to -1)
    output_vtk_name : bool
        if not empty, output a VTK file beginning with output_vtk_name that
        contains a surface with mean distances as scalars
    verbose : bool
        print mean distances to standard output?

    Returns
    -------
    feature_to_border_mean_distances : numpy array [number of features x 1]
        mean distance from each feature to sulcus label border
    feature_to_border_sd_distances : numpy array [number of features x 1]
        standard deviations of feature-to-border distances
    feature_to_border_distances_vtk : string
        VTK surface file containing feature-to-border distances
    border_to_feature_mean_distances : numpy array [number of features x 1]
        mean distances from each sulcus label border to feature
    border_to_feature_sd_distances : numpy array [number of features x 1]
        standard deviations of border-to-feature distances
    border_to_feature_distances_vtk : string
        VTK surface file containing border-to-feature distances

    """
    import os
    import sys
    import numpy as np
    from mindboggle.mio.vtks import read_vtk, read_scalars, write_vtk
    from mindboggle.guts.mesh import find_neighbors, keep_faces
    from mindboggle.guts.segment import extract_borders
    from mindboggle.guts.compute import source_to_target_distances
    from mindboggle.mio.labels import DKTprotocol

    dkt = DKTprotocol()
    # ------------------------------------------------------------------------
    # Load labels, features, and sulci:
    # ------------------------------------------------------------------------
    points, indices, lines, faces, labels, scalar_names, npoints, \
    input_vtk = read_vtk(labels_file, True, True)
    features, name = read_scalars(features_file, True, True)
    if sulci_file:
        sulci, name = read_scalars(sulci_file, True, True)
        # List of indices to sulcus vertices:
        sulcus_indices = [i for i,x in enumerate(sulci)
                          if x not in excludeIDs]
        segmentIDs = sulci
        sulcus_faces = keep_faces(faces, sulcus_indices)
    else:
        sulcus_indices = list(range(len(labels)))
        segmentIDs = []
        sulcus_faces = faces

    # ------------------------------------------------------------------------
    # Prepare neighbors, label pairs, border IDs, and outputs:
    # ------------------------------------------------------------------------
    # Calculate neighbor lists for all points:
    print('Find neighbors for all vertices...')
    neighbor_lists = find_neighbors(faces, npoints)

    # Find label border points in any of the sulci:
    print('Find label border points in any of the sulci...')
    border_indices, border_label_tuples, unique_border_label_tuples = \
        extract_borders(sulcus_indices, labels, neighbor_lists,
                        ignore_values=[], return_label_pairs=True)
    if not len(border_indices):
        sys.exit('There are no label border points!')

    # Initialize an array of label border IDs
    # (label border vertices that define sulci in the labeling protocol):
    print('Build an array of label border IDs...')
    label_borders = -1 * np.ones(npoints)

    if hemi == 'lh':
        nsulcus_lists = len(dkt.left_sulcus_label_pair_lists)
    else:
        nsulcus_lists = len(dkt.right_sulcus_label_pair_lists)
    feature_to_border_mean_distances = -1 * np.ones(nsulcus_lists)
    feature_to_border_sd_distances = -1 * np.ones(nsulcus_lists)
    border_to_feature_mean_distances = -1 * np.ones(nsulcus_lists)
    border_to_feature_sd_distances = -1 * np.ones(nsulcus_lists)
    feature_to_border_distances_vtk = ''
    border_to_feature_distances_vtk = ''

    # ------------------------------------------------------------------------
    # Loop through sulci:
    # ------------------------------------------------------------------------
    # For each list of sorted label pairs (corresponding to a sulcus):
    for isulcus, label_pairs in enumerate(dkt.sulcus_label_pair_lists):

        # Keep the border points with label pair labels:
        label_pair_border_indices = [x for i,x in enumerate(border_indices)
                          if np.unique(border_label_tuples[i]).tolist()
                          in label_pairs]

        # Store the points as sulcus IDs in the border IDs array:
        if label_pair_border_indices:
            label_borders[label_pair_border_indices] = isulcus

    if len(np.unique(label_borders)) > 1:

        # --------------------------------------------------------------------
        # Construct a feature-to-border distance matrix and VTK file:
        # --------------------------------------------------------------------
        # Construct a distance matrix:
        print('Construct a feature-to-border distance matrix...')
        sourceIDs = features
        targetIDs = label_borders
        distances, distance_matrix = source_to_target_distances(
            sourceIDs, targetIDs, points, segmentIDs, excludeIDs)

        # Compute mean distances for each feature:
        nfeatures = min(np.shape(distance_matrix)[1], nsulcus_lists)
        for ifeature in range(nfeatures):
            feature_distances = [x for x in distance_matrix[:, ifeature]
                                 if x != -1]
            feature_to_border_mean_distances[ifeature] = \
                np.mean(feature_distances)
            feature_to_border_sd_distances[ifeature] = \
                np.std(feature_distances)

        if verbose:
            print('Feature-to-border mean distances:')
            print(feature_to_border_mean_distances)
            print('Feature-to-border standard deviations of distances:')
            print(feature_to_border_sd_distances)

        # Write resulting feature-label border distances to VTK file:
        if output_vtk_name:
            feature_to_border_distances_vtk = os.path.join(os.getcwd(),
                output_vtk_name + '_feature_to_border_mean_distances.vtk')
            print('Write feature-to-border distances to {0}...'.
                  format(feature_to_border_distances_vtk))
            write_vtk(feature_to_border_distances_vtk, points,
                      [], [], sulcus_faces, [distances],
                      ['feature-to-border_distances'], 'float')

        # --------------------------------------------------------------------
        # Construct a border-to-feature distance matrix and VTK file:
        # --------------------------------------------------------------------
        # Construct a distance matrix:
        print('Construct a border-to-feature distance matrix...')
        sourceIDs = label_borders
        targetIDs = features
        distances, distance_matrix = source_to_target_distances(
            sourceIDs, targetIDs, points, segmentIDs, excludeIDs)

        # Compute mean distances for each feature:
        nfeatures = min(np.shape(distance_matrix)[1], nsulcus_lists)
        for ifeature in range(nfeatures):
            border_distances = [x for x in distance_matrix[:, ifeature]
                                if x != -1]
            border_to_feature_mean_distances[ifeature] = \
                np.mean(border_distances)
            border_to_feature_sd_distances[ifeature] = \
                np.std(border_distances)

        if verbose:
            print('border-to-feature mean distances:')
            print(border_to_feature_mean_distances)
            print('border-to-feature standard deviations of distances:')
            print(border_to_feature_sd_distances)

        # Write resulting feature-label border distances to VTK file:
        if output_vtk_name:
            border_to_feature_distances_vtk = os.path.join(os.getcwd(),
                output_vtk_name + '_border_to_feature_mean_distances.vtk')
            print('Write border-to-feature distances to {0}...'.
                  format(border_to_feature_distances_vtk))
            write_vtk(border_to_feature_distances_vtk, points,
                      [], [], sulcus_faces, [distances],
                      ['border-to-feature_distances'], 'float')

    # ------------------------------------------------------------------------
    # Return outputs:
    # ------------------------------------------------------------------------
    return feature_to_border_mean_distances, feature_to_border_sd_distances,\
           feature_to_border_distances_vtk,\
           border_to_feature_mean_distances, border_to_feature_sd_distances,\
           border_to_feature_distances_vtk
Esempio n. 10
0
def plot_mask_surface(vtk_file, mask_file='', nonmask_value=-1,
                      masked_output='', remove_nonmask=False,
                      program='vtkviewer',
                      use_colormap=False, colormap_file='',
                      background_value=-1):
    """
    Use vtkviewer or mayavi2 to visualize VTK surface mesh data.

    If a mask_file is provided, a temporary masked file is saved,
    and it is this file that is viewed.

    If using vtkviewer, optionally provide colormap file
    or set $COLORMAP environment variable.

    Parameters
    ----------
    vtk_file : string
        name of VTK surface mesh file
    mask_file : string
        name of VTK surface mesh file to mask vtk_file vertices
    nonmask_value : integer
        nonmask (usually background) value
    masked_output : string
        temporary masked output file name
    remove_nonmask : bool
        remove vertices that are not in mask? (otherwise assign nonmask_value)
    program : string {'vtkviewer', 'mayavi2'}
        program to visualize VTK file
    use_colormap : bool
        use Paraview-style XML colormap file set by $COLORMAP env variable?
    colormap_file : string
        use colormap in given file if use_colormap==True?  if empty and
        use_colormap==True, use file set by $COLORMAP environment variable
    background_value : integer or float
        background value

    Examples
    --------
    >>> import os
    >>> from mindboggle.mio.plots import plot_mask_surface
    >>> from mindboggle.mio.fetch_data import prep_tests
    >>> urls, fetch_data = prep_tests()
    >>> vtk_file = fetch_data(urls['freesurfer_labels'], '', '.vtk')
    >>> os.rename(vtk_file, vtk_file + '.nii.gz')
    >>> vtk_file = vtk_file + '.nii.gz'
    >>> mask_file = ''
    >>> nonmask_value = 0 #-1
    >>> masked_output = ''
    >>> remove_nonmask = True
    >>> program = 'vtkviewer'
    >>> use_colormap = True
    >>> colormap_file = ''
    >>> background_value = -1
    >>> plot_mask_surface(vtk_file, mask_file, nonmask_value, masked_output,
    ...     remove_nonmask, program, use_colormap, colormap_file,
    ...     background_value) # doctest: +SKIP

    """
    import os
    import numpy as np

    from mindboggle.guts.mesh import keep_faces, reindex_faces_points
    from mindboggle.guts.utilities import execute
    from mindboggle.mio.plots import plot_surfaces
    from mindboggle.mio.vtks import read_scalars, rewrite_scalars, \
                                        read_vtk, write_vtk

    # ------------------------------------------------------------------------
    # Filter mesh with non-background values from a second (same-size) mesh:
    # ------------------------------------------------------------------------
    if mask_file:
        mask, name = read_scalars(mask_file, True, True)
        if not masked_output:
            masked_output = os.path.join(os.getcwd(), 'temp.vtk')
        file_to_plot = masked_output

        # --------------------------------------------------------------------
        # Remove nonmask-valued vertices:
        # --------------------------------------------------------------------
        if remove_nonmask:
            # ----------------------------------------------------------------
            # Load VTK files:
            # ----------------------------------------------------------------
            points, indices, lines, faces, scalars, scalar_names, npoints, \
                input_vtk = read_vtk(vtk_file, True, True)
            # ----------------------------------------------------------------
            # Find mask indices, remove nonmask faces, and reindex:
            # ----------------------------------------------------------------
            Imask = [i for i,x in enumerate(mask) if x != nonmask_value]
            mask_faces = keep_faces(faces, Imask)
            mask_faces, points, \
            original_indices = reindex_faces_points(mask_faces, points)
            # ----------------------------------------------------------------
            # Write VTK file with scalar values:
            # ----------------------------------------------------------------
            if np.ndim(scalars) == 1:
                scalar_type = type(scalars[0]).__name__
            elif np.ndim(scalars) == 2:
                scalar_type = type(scalars[0][0]).__name__
            else:
                print("Undefined scalar type!")
            write_vtk(file_to_plot, points, [], [], mask_faces,
                      scalars[original_indices].tolist(), scalar_names,
                      scalar_type=scalar_type)
        else:
            scalars, name = read_scalars(vtk_file, True, True)
            scalars[mask == nonmask_value] = nonmask_value
            rewrite_scalars(vtk_file, file_to_plot, scalars, ['scalars'], [],
                            background_value)
    else:
        file_to_plot = vtk_file

    # ------------------------------------------------------------------------
    # Display with vtkviewer.py:
    # ------------------------------------------------------------------------
    if program == 'vtkviewer':
        plot_surfaces(file_to_plot, use_colormap=use_colormap,
                      colormap_file=colormap_file)
    # ------------------------------------------------------------------------
    # Display with mayavi2:
    # ------------------------------------------------------------------------
    elif program == 'mayavi2':
        cmd = ["mayavi2", "-d", file_to_plot, "-m", "Surface", "&"]
        execute(cmd, 'os')
Esempio n. 11
0
def close_surface_pair(faces, points1, points2, scalars, background_value=-1):
    """
    Close a surface patch by connecting its border vertices with
    corresponding vertices in a second surface file.

    Assumes no lines or indices when reading VTK files in.

    Note ::

        Scalar values different than background define the surface patch.
        The two sets of points have a 1-to-1 mapping; they are from
        two surfaces whose corresponding vertices are shifted in position.
        For pial vs. gray-white matter, the two surfaces are not parallel,
        so connecting the vertices leads to intersecting faces.

    Parameters
    ----------
    faces : list of lists of integers
        each sublist contains 3 indices of vertices that form a face
        on a surface mesh
    points1 : list of lists of floats
        each sublist contains 3-D coordinates of a vertex on a surface mesh
    points2 : list of lists of floats
        points from second surface with 1-to-1 correspondence with points1
    scalars : numpy array of integers
        labels used to find foreground vertices
    background_value : integer
        scalar value for background vertices

    Returns
    -------
    closed_faces : list of lists of integers
        indices of vertices that form a face on the closed surface mesh
    closed_points : list of lists of floats
        3-D coordinates from points1 and points2
    closed_scalars : list of integers
        scalar values for points1 and points2

    Examples
    --------
    >>> # Build a cube by closing two parallel planes:
    >>> from mindboggle.guts.morph import close_surface_pair
    >>> # Build plane:
    >>> background_value = -1
    >>> n = 10  # plane edge length
    >>> points1 = []
    >>> for x in range(n):
    ...     for y in range(n):
    ...          points1.append([x,y,0])
    >>> points2 = [[x[0],x[1],1] for x in points1]
    >>> scalars = [background_value for x in range(len(points1))]
    >>> p = n*(n-1)/2 - 1
    >>> for i in [p, p+1, p+n, p+n+1]:
    ...     scalars[i] = 1
    >>> faces = []
    >>> for x in range(n-1):
    ...     for y in range(n-1):
    ...         faces.append([x+y*n,x+n+y*n,x+n+1+y*n])
    ...         faces.append([x+y*n,x+1+y*n,x+n+1+y*n])
    >>> #write_vtk('plane.vtk', points1, [], [], faces, scalars)
    >>> #plot_surfaces('plane.vtk')
    >>> closed_faces, closed_points, closed_scalars = close_surface_pair(faces,
    ...     points1, points2, scalars, background_value)
    >>> closed_faces[0:4]
    [[44, 54, 55], [44, 45, 55], [144, 154, 155], [144, 145, 155]]

    View cube (skip test):

    >>> from mindboggle.mio.plots import plot_surfaces # doctest: +SKIP
    >>> from mindboggle.mio.vtks import write_vtk # doctest: +SKIP
    >>> write_vtk('cube.vtk', closed_points, [],[], closed_faces,
    ...     closed_scalars, 'int') # doctest: +SKIP
    >>> plot_surfaces('cube.vtk') # doctest: +SKIP

    """
    import sys
    import numpy as np

    from mindboggle.guts.mesh import find_neighbors, keep_faces
    from mindboggle.guts.segment import extract_borders

    if isinstance(scalars, list):
        scalars = np.array(scalars)

    N = len(points1)
    closed_points = points1 + points2

    # Find all vertex neighbors and surface patch border vertices:
    neighbor_lists = find_neighbors(faces, N)
    I = np.where(scalars != background_value)[0]
    scalars[scalars == background_value] = background_value + 1
    scalars[I] = background_value + 2
    scalars = scalars.tolist()
    borders, u1, u2 = extract_borders(list(range(N)), scalars, neighbor_lists)
    if not len(borders):
        sys.exit('There are no border vertices!')
    borders = [x for x in borders if x in I]

    # Reindex copy of faces and combine with original (both zero-index):
    indices = list(range(N))
    indices2 = list(range(N, 2 * N))
    reindex = dict([(index, indices2[i]) for i, index in enumerate(indices)])
    faces = keep_faces(faces, I)
    faces2 = [[reindex[i] for i in face] for face in faces]
    closed_faces = faces + faces2

    # Connect border vertices between surface patches and add new faces:
    add_faces = []
    taken_already = []
    for index in borders:
        if index not in taken_already:
            neighbors = list(set(neighbor_lists[index]).intersection(borders))
            taken_already.append(index)
            #taken_already.extend([index] + neighbors)
            for neighbor in neighbors:
                add_faces.append([index, index + N, neighbor])
                add_faces.append([index + N, neighbor, neighbor + N])
    closed_faces = closed_faces + add_faces

    closed_scalars = scalars * 2

    return closed_faces, closed_points, closed_scalars