class DataStore(): def __init__(self): self.config = Config() self.fs_store = FsStore() self.dir = self.config['paths']['datasources'] self.model_interface = ModelInterface() def get_analysis(self, name, company_id=None): datasource_record = session.query(Datasource).filter_by( company_id=company_id, name=name).first() if datasource_record.analysis is None: return None analysis = json.loads(datasource_record.analysis) return analysis def start_analysis(self, name, company_id=None): datasource_record = session.query(Datasource).filter_by( company_id=company_id, name=name).first() if datasource_record.analysis is not None: return None semaphor_record = session.query(Semaphor).filter_by( company_id=company_id, entity_id=datasource_record.id, entity_type='datasource').first() if semaphor_record is None: semaphor_record = Semaphor(company_id=company_id, entity_id=datasource_record.id, entity_type='datasource', action='write') session.add(semaphor_record) session.commit() else: return try: analysis = self.model_interface.analyse_dataset( ds=self.get_datasource_obj(name, raw=True, company_id=company_id), company_id=company_id) datasource_record = session.query(Datasource).filter_by( company_id=company_id, name=name).first() datasource_record.analysis = json.dumps(analysis, cls=CustomJSONEncoder) session.commit() except Exception as e: log.error(e) finally: semaphor_record = session.query(Semaphor).filter_by( company_id=company_id, entity_id=datasource_record.id, entity_type='datasource').first() session.delete(semaphor_record) session.commit() def get_datasources(self, name=None, company_id=None): datasource_arr = [] if name is not None: datasource_record_arr = session.query(Datasource).filter_by( company_id=company_id, name=name) else: datasource_record_arr = session.query(Datasource).filter_by( company_id=company_id) for datasource_record in datasource_record_arr: try: if datasource_record.data is None: continue datasource = json.loads(datasource_record.data) datasource['created_at'] = datasource_record.created_at datasource['updated_at'] = datasource_record.updated_at datasource['name'] = datasource_record.name datasource['id'] = datasource_record.id datasource_arr.append(datasource) except Exception as e: log.error(e) return datasource_arr def get_data(self, name, where=None, limit=None, offset=None, company_id=None): offset = 0 if offset is None else offset ds = self.get_datasource_obj(name, company_id=company_id) if limit is not None: # @TODO Add `offset` to the `filter` method of the datasource and get rid of `offset` filtered_ds = ds.filter(where=where, limit=limit + offset).iloc[offset:] else: filtered_ds = ds.filter(where=where) filtered_ds = filtered_ds.where(pd.notnull(filtered_ds), None) data = filtered_ds.to_dict(orient='records') return { 'data': data, 'rowcount': len(ds), 'columns_names': list(data[0].keys()) } def get_datasource(self, name, company_id=None): datasource_arr = self.get_datasources(name, company_id=company_id) if len(datasource_arr) == 1: return datasource_arr[0] # @TODO: Remove when db swithc is more stable, this should never happen, but good santiy check while this is kinda buggy elif len(datasource_arr) > 1: log.error('Two or more datasource with the same name, (', len(datasource_arr), ') | Full list: ', datasource_arr) raise Exception('Two or more datasource with the same name') return None def delete_datasource(self, name, company_id=None): datasource_record = Datasource.query.filter_by(company_id=company_id, name=name).first() if not Config()["force_datasource_removing"]: linked_models = Predictor.query.filter_by( company_id=company_id, datasource_id=datasource_record.id).all() if linked_models: raise Exception( "Can't delete {} datasource because there are next models linked to it: {}" .format(name, [model.name for model in linked_models])) session.query(Semaphor).filter_by(company_id=company_id, entity_id=datasource_record.id, entity_type='datasource').delete() session.delete(datasource_record) session.commit() self.fs_store.delete(f'datasource_{company_id}_{datasource_record.id}') try: shutil.rmtree(os.path.join(self.dir, f'{company_id}@@@@@{name}')) except Exception: pass def get_vacant_name(self, base=None, company_id=None): ''' returns name of datasource, which starts from 'base' and ds with that name is not exists yet ''' if base is None: base = 'datasource' datasources = session.query( Datasource.name).filter_by(company_id=company_id).all() datasources_names = [x[0] for x in datasources] if base not in datasources_names: return base for i in range(1, 1000): candidate = f'{base}_{i}' if candidate not in datasources_names: return candidate raise Exception( f"Can not find appropriate name for datasource '{base}'") def create_datasource(self, source_type, source, file_path=None, company_id=None, ds_meta_dir=None): datasource_controller = DatasourceController() if source_type == 'file': source = os.path.join(ds_meta_dir, source) shutil.move(file_path, source) ds = FileDS(source) creation_info = {'class': 'FileDS', 'args': [source], 'kwargs': {}} elif datasource_controller.get_db_integration(source_type, company_id) is not None: integration = datasource_controller.get_db_integration( source_type, company_id) ds_class_map = { 'clickhouse': ClickhouseDS, 'mariadb': MariaDS, 'mysql': MySqlDS, 'singlestore': MySqlDS, 'postgres': PostgresDS, 'cockroachdb': PostgresDS, 'mssql': MSSQLDS, 'mongodb': MongoDS, 'snowflake': SnowflakeDS, 'athena': AthenaDS, 'cassandra': CassandraDS, 'scylladb': ScyllaDS, 'trinodb': TrinoDS } try: dsClass = ds_class_map[integration['type']] except KeyError: raise KeyError( f"Unknown DS type: {source_type}, type is {integration['type']}" ) if dsClass is None: raise Exception( f"Unsupported datasource: {source_type}, type is {integration['type']}, please install required dependencies!" ) if integration['type'] in ['clickhouse']: creation_info = { 'class': dsClass.__name__, 'args': [], 'kwargs': { 'query': source['query'], 'user': integration['user'], 'password': integration['password'], 'host': integration['host'], 'port': integration['port'] } } ds = dsClass(**creation_info['kwargs']) elif integration['type'] in [ 'mssql', 'postgres', 'cockroachdb', 'mariadb', 'mysql', 'singlestore', 'cassandra', 'scylladb' ]: creation_info = { 'class': dsClass.__name__, 'args': [], 'kwargs': { 'query': source['query'], 'user': integration['user'], 'password': integration['password'], 'host': integration['host'], 'port': integration['port'] } } kwargs = creation_info['kwargs'] integration_folder_name = f'integration_files_{company_id}_{integration["id"]}' if integration['type'] in ('mysql', 'mariadb'): kwargs['ssl'] = integration.get('ssl') kwargs['ssl_ca'] = integration.get('ssl_ca') kwargs['ssl_cert'] = integration.get('ssl_cert') kwargs['ssl_key'] = integration.get('ssl_key') for key in ['ssl_ca', 'ssl_cert', 'ssl_key']: if isinstance(kwargs[key], str) and len(kwargs[key]) > 0: kwargs[key] = os.path.join( self.integrations_dir, integration_folder_name, kwargs[key]) elif integration['type'] in ('cassandra', 'scylla'): kwargs['secure_connect_bundle'] = integration.get( 'secure_connect_bundle') if (isinstance(kwargs['secure_connect_bundle'], str) and len(kwargs['secure_connect_bundle']) > 0): kwargs['secure_connect_bundle'] = os.path.join( self.integrations_dir, integration_folder_name, kwargs['secure_connect_bundle']) if 'database' in integration: kwargs['database'] = integration['database'] if 'database' in source: kwargs['database'] = source['database'] ds = dsClass(**kwargs) elif integration['type'] == 'snowflake': creation_info = { 'class': dsClass.__name__, 'args': [], 'kwargs': { 'query': source['query'].replace('"', "'"), 'schema': source.get('schema', integration['schema']), 'warehouse': source.get('warehouse', integration['warehouse']), 'database': source.get('database', integration['database']), 'host': integration['host'], 'password': integration['password'], 'user': integration['user'], 'account': integration['account'] } } ds = dsClass(**creation_info['kwargs']) elif integration['type'] == 'mongodb': if isinstance(source['find'], str): source['find'] = json.loads(source['find']) creation_info = { 'class': dsClass.__name__, 'args': [], 'kwargs': { 'database': source['database'], 'collection': source['collection'], 'query': source['find'], 'user': integration['user'], 'password': integration['password'], 'host': integration['host'], 'port': integration['port'] } } ds = dsClass(**creation_info['kwargs']) elif integration['type'] == 'athena': creation_info = { 'class': dsClass.__name__, 'args': [], 'kwargs': { 'query': source['query'], 'staging_dir': source['staging_dir'], 'database': source['database'], 'access_key': source['access_key'], 'secret_key': source['secret_key'], 'region_name': source['region_name'] } } ds = dsClass(**creation_info['kwargs']) elif integration['type'] == 'trinodb': creation_info = { 'class': dsClass.__name__, 'args': [], 'kwargs': { 'query': source['query'], 'user': integration['user'], 'password': integration['password'], 'host': integration['host'], 'port': integration['port'], 'schema': integration['schema'], 'catalog': integration['catalog'] } } ds = dsClass(**creation_info['kwargs']) else: # This probably only happens for urls ds = FileDS(source) creation_info = {'class': 'FileDS', 'args': [source], 'kwargs': {}} return ds, creation_info def save_datasource(self, name, source_type, source, file_path=None, company_id=None): if source_type == 'file' and (file_path is None): raise Exception( '`file_path` argument required when source_type == "file"') datasource_record = session.query(Datasource).filter_by( company_id=company_id, name=name).first() while datasource_record is not None: raise Exception(f'Datasource with name {name} already exists') try: datasource_record = Datasource( company_id=company_id, name=name, datasources_version=mindsdb_datasources.__version__, mindsdb_version=mindsdb_version) session.add(datasource_record) session.commit() ds_meta_dir = os.path.join(self.dir, f'{company_id}@@@@@{name}') os.mkdir(ds_meta_dir) ds, creation_info = self.create_datasource(source_type, source, file_path, company_id, ds_meta_dir) if hasattr(ds, 'get_columns') and hasattr(ds, 'get_row_count'): try: column_names = ds.get_columns() row_count = ds.get_row_count() except Exception: df = ds.df column_names = list(df.keys()) row_count = len(df) else: df = ds.df column_names = list(df.keys()) row_count = len(df) if '' in column_names or len(column_names) != len( set(column_names)): shutil.rmtree(ds_meta_dir) raise Exception( 'Each column in datasource must have unique non-empty name' ) datasource_record.creation_info = json.dumps(creation_info) datasource_record.data = json.dumps({ 'source_type': source_type, 'source': source, 'row_count': row_count, 'columns': [dict(name=x) for x in column_names] }) self.fs_store.put( f'{company_id}@@@@@{name}', f'datasource_{company_id}_{datasource_record.id}', self.dir) session.commit() except Exception as e: log.error(f'Error creating datasource {name}, exception: {e}') try: self.delete_datasource(name, company_id=company_id) except Exception: pass raise e return self.get_datasource_obj(name, raw=True, company_id=company_id) def get_datasource_obj(self, name=None, id=None, raw=False, company_id=None): try: if name is not None: datasource_record = session.query(Datasource).filter_by( company_id=company_id, name=name).first() else: datasource_record = session.query(Datasource).filter_by( company_id=company_id, id=id).first() self.fs_store.get( f'{company_id}@@@@@{name}', f'datasource_{company_id}_{datasource_record.id}', self.dir) creation_info = json.loads(datasource_record.creation_info) if raw: return creation_info else: return eval(creation_info['class'])(*creation_info['args'], **creation_info['kwargs']) except Exception as e: log.error(f'Error getting datasource {name}, exception: {e}') return None
class ModelController(): config: Config fs_store: FsStore predictor_cache: Dict[str, Dict[str, Union[Any]]] ray_based: bool def __init__(self, ray_based: bool) -> None: self.config = Config() self.fs_store = FsStore() self.predictor_cache = {} self.ray_based = ray_based def _invalidate_cached_predictors(self) -> None: # @TODO: Cache will become stale if the respective ModelInterface is not invoked yet a bunch of predictors remained cached, no matter where we invoke it. In practice shouldn't be a big issue though for predictor_name in list(self.predictor_cache.keys()): if (datetime.datetime.now() - self.predictor_cache[predictor_name]['created'] ).total_seconds() > 1200: del self.predictor_cache[predictor_name] def _lock_predictor(self, id: int, mode: str) -> None: from mindsdb.interfaces.storage.db import session, Semaphor while True: semaphor_record = session.query(Semaphor).filter_by( entity_id=id, entity_type='predictor').first() if semaphor_record is not None: if mode == 'read' and semaphor_record.action == 'read': return True try: semaphor_record = Semaphor(entity_id=id, entity_type='predictor', action=mode) session.add(semaphor_record) session.commit() return True except Exception: pass time.sleep(1) def _unlock_predictor(self, id: int) -> None: from mindsdb.interfaces.storage.db import session, Semaphor semaphor_record = session.query(Semaphor).filter_by( entity_id=id, entity_type='predictor').first() if semaphor_record is not None: session.delete(semaphor_record) session.commit() @contextmanager def _lock_context(self, id, mode: str): try: self._lock_predictor(id, mode) yield True finally: self._unlock_predictor(id) def _get_from_data_df(self, from_data: dict) -> DataFrame: ds_cls = getattr(mindsdb_datasources, from_data['class']) ds = ds_cls(*from_data['args'], **from_data['kwargs']) return ds.df def _unpack_old_args( self, from_data: dict, kwargs: dict, to_predict: Optional[Union[str, list]] = None ) -> Tuple[pd.DataFrame, ProblemDefinition, bool]: problem_definition = kwargs or {} if isinstance(to_predict, str): problem_definition['target'] = to_predict elif isinstance(to_predict, list) and len(to_predict) == 1: problem_definition['target'] = to_predict[0] elif problem_definition.get('target') is None: raise Exception( f"Predict target must be 'str' or 'list' with 1 element. Got: {to_predict}" ) join_learn_process = kwargs.get('join_learn_process', False) if 'join_learn_process' in kwargs: del kwargs['join_learn_process'] # Adapt kwargs to problem definition if 'timeseries_settings' in kwargs: problem_definition['timeseries_settings'] = kwargs[ 'timeseries_settings'] if 'stop_training_in_x_seconds' in kwargs: problem_definition['time_aim'] = kwargs[ 'stop_training_in_x_seconds'] if kwargs.get('ignore_columns') is not None: problem_definition['ignore_features'] = kwargs['ignore_columns'] if (problem_definition.get('ignore_features') is not None and isinstance(problem_definition['ignore_features'], list) is False): problem_definition['ignore_features'] = [ problem_definition['ignore_features'] ] df = self._get_from_data_df(from_data) return df, problem_definition, join_learn_process @mark_process(name='learn') def learn(self, name: str, from_data: dict, to_predict: str, datasource_id: int, kwargs: dict, company_id: int, delete_ds_on_fail: Optional[bool] = False) -> None: predictor_record = db.session.query(db.Predictor).filter_by( company_id=company_id, name=name).first() if predictor_record is not None: raise Exception('Predictor name must be unique.') df, problem_definition, join_learn_process = self._unpack_old_args( from_data, kwargs, to_predict) problem_definition = ProblemDefinition.from_dict(problem_definition) predictor_record = db.Predictor( company_id=company_id, name=name, datasource_id=datasource_id, mindsdb_version=mindsdb_version, lightwood_version=lightwood_version, to_predict=problem_definition.target, learn_args=problem_definition.to_dict(), data={'name': name}) db.session.add(predictor_record) db.session.commit() predictor_id = predictor_record.id p = LearnProcess(df, problem_definition, predictor_id, delete_ds_on_fail) p.start() if join_learn_process: p.join() if not IS_PY36: p.close() db.session.refresh(predictor_record) data = {} if predictor_record.update_status == 'available': data['status'] = 'complete' elif predictor_record.json_ai is None and predictor_record.code is None: data['status'] = 'generating' elif predictor_record.data is None: data['status'] = 'editable' elif 'training_log' in predictor_record.data: data['status'] = 'training' elif 'error' not in predictor_record.data: data['status'] = 'complete' else: data['status'] = 'error' @mark_process(name='predict') def predict(self, name: str, when_data: Union[dict, list, pd.DataFrame], pred_format: str, company_id: int): original_name = name name = f'{company_id}@@@@@{name}' predictor_record = db.session.query(db.Predictor).filter_by( company_id=company_id, name=original_name).first() assert predictor_record is not None predictor_data = self.get_model_data(name, company_id) fs_name = f'predictor_{company_id}_{predictor_record.id}' if (name in self.predictor_cache and self.predictor_cache[name]['updated_at'] != predictor_record.updated_at): del self.predictor_cache[name] if name not in self.predictor_cache: # Clear the cache entirely if we have less than 1.2 GB left if psutil.virtual_memory().available < 1.2 * pow(10, 9): self.predictor_cache = {} if predictor_data['status'] == 'complete': self.fs_store.get(fs_name, fs_name, self.config['paths']['predictors']) self.predictor_cache[name] = { 'predictor': lightwood.predictor_from_state( os.path.join(self.config['paths']['predictors'], fs_name), predictor_record.code), 'updated_at': predictor_record.updated_at, 'created': datetime.datetime.now(), 'code': predictor_record.code, 'pickle': str( os.path.join(self.config['paths']['predictors'], fs_name)) } else: raise Exception( f'Trying to predict using predictor {original_name} with status: {predictor_data["status"]}. Error is: {predictor_data.get("error", "unknown")}' ) if isinstance(when_data, dict) and 'kwargs' in when_data and 'args' in when_data: ds_cls = getattr(mindsdb_datasources, when_data['class']) df = ds_cls(*when_data['args'], **when_data['kwargs']).df else: if isinstance(when_data, dict): when_data = [when_data] df = pd.DataFrame(when_data) predictions = self.predictor_cache[name]['predictor'].predict(df) predictions = predictions.to_dict(orient='records') # Bellow is useful for debugging caching and storage issues # del self.predictor_cache[name] target = predictor_record.to_predict[0] if pred_format in ('explain', 'dict', 'dict&explain'): explain_arr = [] dict_arr = [] for i, row in enumerate(predictions): explain_arr.append({ target: { 'predicted_value': row['prediction'], 'confidence': row.get('confidence', None), 'confidence_lower_bound': row.get('lower', None), 'confidence_upper_bound': row.get('upper', None), 'anomaly': row.get('anomaly', None), 'truth': row.get('truth', None) } }) td = {'predicted_value': row['prediction']} for col in df.columns: if col in row: td[col] = row[col] elif f'order_{col}' in row: td[col] = row[f'order_{col}'] elif f'group_{col}' in row: td[col] = row[f'group_{col}'] else: orginal_index = row.get('original_index') if orginal_index is None: log.warning('original_index is None') orginal_index = i td[col] = df.iloc[orginal_index][col] dict_arr.append({target: td}) if pred_format == 'explain': return explain_arr elif pred_format == 'dict': return dict_arr elif pred_format == 'dict&explain': return dict_arr, explain_arr # New format -- Try switching to this in 2-3 months for speed, for now above is ok else: return predictions @mark_process(name='analyse') def analyse_dataset(self, ds: dict, company_id: int) -> lightwood.DataAnalysis: ds_cls = getattr(mindsdb_datasources, ds['class']) df = ds_cls(*ds['args'], **ds['kwargs']).df analysis = lightwood.analyze_dataset(df) return analysis.to_dict() # type: ignore def get_model_data(self, name, company_id: int): if '@@@@@' in name: sn = name.split('@@@@@') assert len(sn) < 3 # security name = sn[1] original_name = name name = f'{company_id}@@@@@{name}' predictor_record = db.session.query(db.Predictor).filter_by( company_id=company_id, name=original_name).first() assert predictor_record is not None linked_db_ds = db.session.query(db.Datasource).filter_by( company_id=company_id, id=predictor_record.datasource_id).first() data = deepcopy(predictor_record.data) data['dtype_dict'] = predictor_record.dtype_dict data['created_at'] = str( parse_datetime(str(predictor_record.created_at).split('.')[0])) data['updated_at'] = str( parse_datetime(str(predictor_record.updated_at).split('.')[0])) data['predict'] = predictor_record.to_predict[0] data['update'] = predictor_record.update_status data['mindsdb_version'] = predictor_record.mindsdb_version data['name'] = predictor_record.name data['code'] = predictor_record.code data['json_ai'] = predictor_record.json_ai data['data_source_name'] = linked_db_ds.name if linked_db_ds else None data['problem_definition'] = predictor_record.learn_args # assume older models are complete, only temporary if 'error' in predictor_record.data: data['status'] = 'error' elif predictor_record.update_status == 'available': data['status'] = 'complete' elif predictor_record.json_ai is None and predictor_record.code is None: data['status'] = 'generating' elif predictor_record.data is None: data['status'] = 'editable' elif 'training_log' in predictor_record.data: data['status'] = 'training' elif 'error' not in predictor_record.data: data['status'] = 'complete' else: data['status'] = 'error' if data.get('accuracies', None) is not None: if len(data['accuracies']) > 0: data['accuracy'] = float( np.mean(list(data['accuracies'].values()))) return data def get_model_description(self, name: str, company_id: int): """ Similar to `get_model_data` but meant to be seen directly by the user, rather than parsed by something like the Studio predictor view. Uses `get_model_data` to compose this, but in the future we might want to make this independent if we deprected `get_model_data` :returns: Dictionary of the analysis (meant to be foramtted by the APIs and displayed as json/yml/whatever) """ # noqa model_description = {} model_data = self.get_model_data(name, company_id) model_description['accuracies'] = model_data['accuracies'] model_description['column_importances'] = model_data[ 'column_importances'] model_description['outputs'] = [model_data['predict']] model_description['inputs'] = [ col for col in model_data['dtype_dict'] if col not in model_description['outputs'] ] model_description['datasource'] = model_data['data_source_name'] model_description['model'] = ' --> '.join( str(k) for k in model_data['json_ai']) return model_description def get_models(self, company_id: int): models = [] for db_p in db.session.query( db.Predictor).filter_by(company_id=company_id): model_data = self.get_model_data(db_p.name, company_id=company_id) reduced_model_data = {} for k in [ 'name', 'version', 'is_active', 'predict', 'status', 'current_phase', 'accuracy', 'data_source', 'update', 'data_source_name', 'mindsdb_version', 'error' ]: reduced_model_data[k] = model_data.get(k, None) for k in ['train_end_at', 'updated_at', 'created_at']: reduced_model_data[k] = model_data.get(k, None) if reduced_model_data[k] is not None: try: reduced_model_data[k] = parse_datetime( str(reduced_model_data[k]).split('.')[0]) except Exception as e: # @TODO Does this ever happen log.error( f'Date parsing exception while parsing: {k} in get_models: ', e) reduced_model_data[k] = parse_datetime( str(reduced_model_data[k])) models.append(reduced_model_data) return models def delete_model(self, name, company_id: int): original_name = name name = f'{company_id}@@@@@{name}' db_p = db.session.query(db.Predictor).filter_by( company_id=company_id, name=original_name).first() if db_p is None: raise Exception(f"Predictor '{name}' does not exist") db.session.delete(db_p) if db_p.datasource_id is not None: try: dataset_record = db.Datasource.query.get(db_p.datasource_id) if (isinstance(dataset_record.data, str) and json.loads( dataset_record.data).get('source_type') != 'file'): DataStore().delete_datasource(dataset_record.name, company_id) except Exception: pass db.session.commit() DatabaseWrapper(company_id).unregister_predictor(name) # delete from s3 self.fs_store.delete(f'predictor_{company_id}_{db_p.id}') return 0 def rename_model(self, old_name, new_name, company_id: int): db_p = db.session.query(db.Predictor).filter_by(company_id=company_id, name=old_name).first() db_p.name = new_name db.session.commit() dbw = DatabaseWrapper(company_id) dbw.unregister_predictor(old_name) dbw.register_predictors([self.get_model_data(new_name, company_id)]) @mark_process(name='learn') def update_model(self, name: str, company_id: int): # TODO: Add version check here once we're done debugging predictor_record = db.session.query(db.Predictor).filter_by( company_id=company_id, name=name).first() assert predictor_record is not None predictor_record.update_status = 'updating' db.session.commit() p = UpdateProcess(name, company_id) p.start() return 'Updated in progress' @mark_process(name='learn') def generate_predictor(self, name: str, from_data: dict, datasource_id, problem_definition_dict: dict, join_learn_process: bool, company_id: int): predictor_record = db.session.query(db.Predictor).filter_by( company_id=company_id, name=name).first() if predictor_record is not None: raise Exception('Predictor name must be unique.') df, problem_definition, _ = self._unpack_old_args( from_data, problem_definition_dict) problem_definition = ProblemDefinition.from_dict(problem_definition) predictor_record = db.Predictor( company_id=company_id, name=name, datasource_id=datasource_id, mindsdb_version=mindsdb_version, lightwood_version=lightwood_version, to_predict=problem_definition.target, learn_args=problem_definition.to_dict(), data={'name': name}) db.session.add(predictor_record) db.session.commit() predictor_id = predictor_record.id p = GenerateProcess(df, problem_definition, predictor_id) p.start() if join_learn_process: p.join() if not IS_PY36: p.close() db.session.refresh(predictor_record) def edit_json_ai(self, name: str, json_ai: dict, company_id=None): predictor_record = db.session.query(db.Predictor).filter_by( company_id=company_id, name=name).first() assert predictor_record is not None json_ai = lightwood.JsonAI.from_dict(json_ai) predictor_record.code = lightwood.code_from_json_ai(json_ai) predictor_record.json_ai = json_ai.to_dict() db.session.commit() def code_from_json_ai(self, json_ai: dict, company_id=None): json_ai = lightwood.JsonAI.from_dict(json_ai) code = lightwood.code_from_json_ai(json_ai) return code def edit_code(self, name: str, code: str, company_id=None): """Edit an existing predictor's code""" if self.config.get('cloud', False): raise Exception('Code editing prohibited on cloud') predictor_record = db.session.query(db.Predictor).filter_by( company_id=company_id, name=name).first() assert predictor_record is not None lightwood.predictor_from_code(code) predictor_record.code = code predictor_record.json_ai = None db.session.commit() @mark_process(name='learn') def fit_predictor(self, name: str, from_data: dict, join_learn_process: bool, company_id: int) -> None: predictor_record = db.session.query(db.Predictor).filter_by( company_id=company_id, name=name).first() assert predictor_record is not None df = self._get_from_data_df(from_data) p = FitProcess(predictor_record.id, df) p.start() if join_learn_process: p.join() if not IS_PY36: p.close()