Esempio n. 1
0
def test_random_resized_crop_with_bbox_op_bad_c():
    """
    Test RandomCropWithBBox op with invalid bounding boxes, expected to catch multiple errors.
    """
    logger.info("test_random_resized_crop_with_bbox_op_bad_c")
    test_op = c_vision.RandomResizedCropWithBBox((256, 512), (0.5, 0.5),
                                                 (0.5, 0.5))

    data_voc2 = ds.VOCDataset(DATA_DIR_VOC,
                              task="Detection",
                              mode="train",
                              decode=True,
                              shuffle=False)
    check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WidthOverflow,
                   "bounding boxes is out of bounds of the image")
    data_voc2 = ds.VOCDataset(DATA_DIR_VOC,
                              task="Detection",
                              mode="train",
                              decode=True,
                              shuffle=False)
    check_bad_bbox(data_voc2, test_op, InvalidBBoxType.HeightOverflow,
                   "bounding boxes is out of bounds of the image")
    data_voc2 = ds.VOCDataset(DATA_DIR_VOC,
                              task="Detection",
                              mode="train",
                              decode=True,
                              shuffle=False)
    check_bad_bbox(data_voc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
    data_voc2 = ds.VOCDataset(DATA_DIR_VOC,
                              task="Detection",
                              mode="train",
                              decode=True,
                              shuffle=False)
    check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WrongShape,
                   "4 features")
Esempio n. 2
0
def test_c_random_resized_crop_with_bbox_op_invalid2():
    """
     Prints images side by side with and without Aug applied + bboxes to compare and test
    """
    # Load dataset # only loading the to AugDataset as test will fail on this
    dataVoc2 = ds.VOCDataset(DATA_DIR,
                             task="Detection",
                             mode="train",
                             decode=True,
                             shuffle=False)

    try:
        # If input range of ratio is not in the order of (min, max), ValueError will be raised.
        test_op = c_vision.RandomResizedCropWithBBox((256, 512), (1, 1),
                                                     (1, 0.5))

        # maps to fix annotations to HQ standard
        dataVoc2 = dataVoc2.map(input_columns=["annotation"],
                                output_columns=["annotation"],
                                operations=fix_annotate)
        # map to apply ops
        dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
                                output_columns=["image", "annotation"],
                                columns_order=["image", "annotation"],
                                operations=[test_op])

        for _ in dataVoc2.create_dict_iterator():
            break

    except ValueError as err:
        logger.info("Got an exception in DE: {}".format(str(err)))
        assert "Input range is not valid" in str(err)
Esempio n. 3
0
def test_random_resized_crop_with_bbox_op_invalid2_c():
    """
     Tests RandomResizedCropWithBBox Op on invalid constructor parameters, expected to raise ValueError
    """
    logger.info("test_random_resized_crop_with_bbox_op_invalid2_c")
    # Load dataset # only loading the to AugDataset as test will fail on this
    dataVoc2 = ds.VOCDataset(DATA_DIR_VOC,
                             task="Detection",
                             mode="train",
                             decode=True,
                             shuffle=False)

    try:
        # If input range of ratio is not in the order of (min, max), ValueError will be raised.
        test_op = c_vision.RandomResizedCropWithBBox((256, 512), (1, 1),
                                                     (1, 0.5))

        # map to apply ops
        dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
                                output_columns=["image", "annotation"],
                                columns_order=["image", "annotation"],
                                operations=[test_op])

        for _ in dataVoc2.create_dict_iterator():
            break

    except ValueError as err:
        logger.info("Got an exception in DE: {}".format(str(err)))
        assert "Input is not within the required interval of (0 to 16777216)." in str(
            err)
Esempio n. 4
0
def test_random_resized_crop_with_bbox_op_edge_c(plot_vis=False):
    """
    Prints images and bboxes side by side with and without RandomResizedCropWithBBox Op applied,
    tests on dynamically generated edge case, expected to pass
    """
    logger.info("test_random_resized_crop_with_bbox_op_edge_c")

    # Load dataset
    dataVoc1 = ds.VOCDataset(DATA_DIR_VOC,
                             task="Detection",
                             mode="train",
                             decode=True,
                             shuffle=False)
    dataVoc2 = ds.VOCDataset(DATA_DIR_VOC,
                             task="Detection",
                             mode="train",
                             decode=True,
                             shuffle=False)

    test_op = c_vision.RandomResizedCropWithBBox((256, 512), (0.5, 0.5),
                                                 (0.5, 0.5))

    # maps to convert data into valid edge case data
    dataVoc1 = dataVoc1.map(
        input_columns=["image", "annotation"],
        output_columns=["image", "annotation"],
        columns_order=["image", "annotation"],
        operations=[
            lambda img, bboxes:
            (img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.
                                                                        dtype))
        ])

    # Test Op added to list of Operations here
    dataVoc2 = dataVoc2.map(
        input_columns=["image", "annotation"],
        output_columns=["image", "annotation"],
        columns_order=["image", "annotation"],
        operations=[
            lambda img, bboxes:
            (img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(
                bboxes.dtype)), test_op
        ])

    unaugSamp, augSamp = [], []

    for unAug, Aug in zip(dataVoc1.create_dict_iterator(),
                          dataVoc2.create_dict_iterator()):
        unaugSamp.append(unAug)
        augSamp.append(Aug)

    if plot_vis:
        visualize_with_bounding_boxes(unaugSamp, augSamp)
Esempio n. 5
0
def test_c_random_resized_crop_with_bbox_op_edge(plot_vis=False):
    """
     Prints images side by side with and without Aug applied + bboxes to compare and test
    """
    # Load dataset
    dataVoc1 = ds.VOCDataset(DATA_DIR,
                             task="Detection",
                             mode="train",
                             decode=True,
                             shuffle=False)
    dataVoc2 = ds.VOCDataset(DATA_DIR,
                             task="Detection",
                             mode="train",
                             decode=True,
                             shuffle=False)

    test_op = c_vision.RandomResizedCropWithBBox((256, 512), (0.5, 0.5),
                                                 (0.5, 0.5))

    # maps to fix annotations to HQ standard
    dataVoc1 = dataVoc1.map(input_columns=["annotation"],
                            output_columns=["annotation"],
                            operations=fix_annotate)
    dataVoc2 = dataVoc2.map(input_columns=["annotation"],
                            output_columns=["annotation"],
                            operations=fix_annotate)

    # Modify BBoxes to serve as valid edge cases
    dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
                            output_columns=["image", "annotation"],
                            columns_order=["image", "annotation"],
                            operations=[gen_bbox_edge])

    # map to apply ops
    dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
                            output_columns=["image", "annotation"],
                            columns_order=["image", "annotation"],
                            operations=[test_op
                                        ])  # Add column for "annotation"

    unaugSamp, augSamp = [], []

    for unAug, Aug in zip(dataVoc1.create_dict_iterator(),
                          dataVoc2.create_dict_iterator()):
        unaugSamp.append(unAug)
        augSamp.append(Aug)

    if plot_vis:
        visualize(unaugSamp, augSamp)
Esempio n. 6
0
def test_random_resized_crop_with_bbox_op_c(plot_vis=False):
    """
    Prints images and bboxes side by side with and without RandomResizedCropWithBBox Op applied,
    tests with MD5 check, expected to pass
    """
    logger.info("test_random_resized_crop_with_bbox_op_c")

    original_seed = config_get_set_seed(23415)
    original_num_parallel_workers = config_get_set_num_parallel_workers(1)

    # Load dataset
    dataVoc1 = ds.VOCDataset(DATA_DIR_VOC,
                             task="Detection",
                             mode="train",
                             decode=True,
                             shuffle=False)
    dataVoc2 = ds.VOCDataset(DATA_DIR_VOC,
                             task="Detection",
                             mode="train",
                             decode=True,
                             shuffle=False)

    test_op = c_vision.RandomResizedCropWithBBox((256, 512), (0.5, 0.5),
                                                 (0.5, 0.5))

    # map to apply ops
    dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
                            output_columns=["image", "annotation"],
                            columns_order=["image", "annotation"],
                            operations=[test_op])

    filename = "random_resized_crop_with_bbox_01_c_result.npz"
    save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)

    unaugSamp, augSamp = [], []

    for unAug, Aug in zip(dataVoc1.create_dict_iterator(),
                          dataVoc2.create_dict_iterator()):
        unaugSamp.append(unAug)
        augSamp.append(Aug)

    if plot_vis:
        visualize_with_bounding_boxes(unaugSamp, augSamp)

    # Restore config setting
    ds.config.set_seed(original_seed)
    ds.config.set_num_parallel_workers(original_num_parallel_workers)
Esempio n. 7
0
def test_random_resized_crop_with_bbox_op_coco_c(plot_vis=False):
    """
    Prints images and bboxes side by side with and without RandomResizedCropWithBBox Op applied,
    Testing with Coco dataset
    """
    logger.info("test_random_resized_crop_with_bbox_op_coco_c")
    # load dataset
    dataCoco1 = ds.CocoDataset(DATA_DIR_COCO[0],
                               annotation_file=DATA_DIR_COCO[1],
                               task="Detection",
                               decode=True,
                               shuffle=False)

    dataCoco2 = ds.CocoDataset(DATA_DIR_COCO[0],
                               annotation_file=DATA_DIR_COCO[1],
                               task="Detection",
                               decode=True,
                               shuffle=False)

    test_op = c_vision.RandomResizedCropWithBBox((512, 512), (0.5, 1),
                                                 (0.5, 1))

    dataCoco2 = dataCoco2.map(input_columns=["image", "bbox"],
                              output_columns=["image", "bbox"],
                              columns_order=["image", "bbox"],
                              operations=[test_op])

    unaugSamp, augSamp = [], []

    for unAug, Aug in zip(dataCoco1.create_dict_iterator(),
                          dataCoco2.create_dict_iterator()):
        unaugSamp.append(unAug)
        augSamp.append(Aug)

    if plot_vis:
        visualize_with_bounding_boxes(unaugSamp, augSamp, "bbox")