def __init__(self, num_classes=10): super(SqueezeNet, self).__init__() self.features = nn.SequentialCell([ nn.Conv2d(3, 96, kernel_size=7, stride=2, pad_mode='valid', has_bias=True), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2), Fire(96, 16, 64, 64), Fire(128, 16, 64, 64), Fire(128, 32, 128, 128), nn.MaxPool2d(kernel_size=3, stride=2), Fire(256, 32, 128, 128), Fire(256, 48, 192, 192), Fire(384, 48, 192, 192), Fire(384, 64, 256, 256), nn.MaxPool2d(kernel_size=3, stride=2), Fire(512, 64, 256, 256), ]) # Final convolution is initialized differently from the rest self.final_conv = nn.Conv2d(512, num_classes, kernel_size=1, has_bias=True) self.dropout = nn.Dropout(keep_prob=0.5) self.relu = nn.ReLU() self.mean = P.ReduceMean(keep_dims=True) self.flatten = nn.Flatten() self.custom_init_weight()
def __init__(self, in_str): super(LeNet5, self).__init__() a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15 = in_str.strip( ).split() a1 = int(a1) a2 = int(a2) a3 = int(a3) a4 = int(a4) a5 = int(a5) a6 = int(a6) a7 = int(a7) a8 = int(a8) a9 = int(a9) a10 = int(a10) a11 = int(a11) a12 = int(a12) a13 = int(a13) a14 = int(a14) a15 = int(a15) self.conv1 = nn.Conv2d(a1, a2, a3, pad_mode="valid") self.conv2 = nn.Conv2d(a4, a5, a6, pad_mode="valid") self.fc1 = nn.Dense(a7 * a8 * a9, a10) self.fc2 = nn.Dense(a11, a12) self.fc3 = nn.Dense(a13, a14) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=a15) self.flatten = nn.Flatten()
def __init__(self, num_classes=10): super(SqueezeNet_Residual, self).__init__() self.conv1 = nn.Conv2d(3, 96, kernel_size=7, stride=2, pad_mode='valid', has_bias=True) self.fire2 = Fire(96, 16, 64, 64) self.fire3 = Fire(128, 16, 64, 64) self.fire4 = Fire(128, 32, 128, 128) self.fire5 = Fire(256, 32, 128, 128) self.fire6 = Fire(256, 48, 192, 192) self.fire7 = Fire(384, 48, 192, 192) self.fire8 = Fire(384, 64, 256, 256) self.fire9 = Fire(512, 64, 256, 256) # Final convolution is initialized differently from the rest self.conv10 = nn.Conv2d(512, num_classes, kernel_size=1, has_bias=True) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2) self.add = P.Add() self.dropout = nn.Dropout(keep_prob=0.5) self.mean = P.ReduceMean(keep_dims=True) self.flatten = nn.Flatten() self.custom_init_weight()
def __init__(self, num_class=10): # 一共分十类,图片通道数是1 super(Forward_fashion, self).__init__() self.num_class = num_class self.flatten = nn.Flatten() self.fc1 = nn.Dense(cfg.channel * cfg.image_height * cfg.image_width, 128) self.relu = nn.ReLU() self.fc2 = nn.Dense(128, self.num_class)
def __init__(self, num_classes): super(Encoder, self).__init__() self.fc1 = nn.Dense(1024 + num_classes, 400) self.relu = nn.ReLU() self.flatten = nn.Flatten() self.concat = P.Concat(axis=1) self.one_hot = nn.OneHot(depth=num_classes)
def __init__(self, num_class=10): # 一共分十类,图片通道数是1 super(ForwardFashionRegularization, self).__init__() self.num_class = num_class self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=0, has_bias=False, pad_mode="valid") self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=0, has_bias=False, pad_mode="valid") self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=0, has_bias=False, pad_mode="valid") self.maxpool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.relu = nn.ReLU() self.dropout = nn.Dropout() self.flatten = nn.Flatten() self.fc1 = nn.Dense(3200, 128) self.bn = nn.BatchNorm1d(128) self.fc2 = nn.Dense(128, self.num_class)
def __init__(self, block, num_classes=100): super(ResNet9, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2) self.layer1 = self.MakeLayer(block, 1, in_channels=64, out_channels=256, stride=1) self.layer2 = self.MakeLayer(block, 1, in_channels=256, out_channels=512, stride=2) self.layer3 = self.MakeLayer(block, 1, in_channels=512, out_channels=1024, stride=2) self.layer4 = self.MakeLayer(block, 1, in_channels=1024, out_channels=2048, stride=2) self.avgpool = nn.AvgPool2d(7, 1) self.flatten = nn.Flatten() self.fc = nn.Dense(512 * block.expansion, num_classes)
def __init__(self): super(Net, self).__init__() self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal', pad_mode='valid') self.bn = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.flatten = nn.Flatten() self.fc = nn.Dense(64 * 222 * 222, 3) # padding=0
def __init__(self): super(Net, self).__init__() self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal') self.bn = nn.BatchNorm2d(64) self.fc = nn.Dense(64, 10) self.relu = nn.ReLU() self.flatten = nn.Flatten()
def __init__(self, num_class=10): super(LeNet5, self).__init__() self.cast = P.Cast() self.flatten = nn.Flatten() self.embedding = nn.EmbeddingLookup(16, 4) self.relu = nn.ReLU() self.fc = fc_with_initialize(12, num_class)
def __init__(self, base, num_classes=1000, batch_norm=False, batch_size=1, args=None, phase="train", include_top=True): super(Vgg, self).__init__() _ = batch_size self.layers = _make_layer(base, args, batch_norm=batch_norm) self.include_top = include_top self.flatten = nn.Flatten() dropout_ratio = 0.5 if not args.has_dropout or phase == "test": dropout_ratio = 1.0 self.classifier = nn.SequentialCell([ nn.Dense(512 * 7 * 7, 4096), nn.ReLU(), nn.Dropout(dropout_ratio), nn.Dense(4096, 4096), nn.ReLU(), nn.Dropout(dropout_ratio), nn.Dense(4096, num_classes) ]) if args.initialize_mode == "KaimingNormal": default_recurisive_init(self) self.custom_init_weight()
def __init__(self, batchnorm, dropout): super(CosineNet, self).__init__() layers = [] if batchnorm: layers.append(nn.BatchNorm2d(INPUT_DIM)) # initialize hidden layers for l_n in range(N_LAYERS): in_channels = HIDDEN_DIM if l_n > 0 else INPUT_DIM # Use 1x1Conv instead of Dense, which coordinate better with BatchNorm2d opetator; conv = nn.Conv2d(in_channels, HIDDEN_DIM, kernel_size=1, pad_mode='valid', has_bias=True, weight_init=Normal(0.01)) layers.append(conv) if batchnorm: layers.append(nn.BatchNorm2d(HIDDEN_DIM)) if dropout: layers.append(nn.Dropout(DROPOUT_RATE)) layers.append(ACTIVATION()) self.layers = nn.SequentialCell(layers) # initialize output layers self.flatten = nn.Flatten( ) # convert 4-dim tensor (N,C,H,W) to 2-dim tensor(N,C*H*W) self.fc = nn.Dense(HIDDEN_DIM, OUTPUT_DIM, weight_init=Normal(0.1), bias_init='zeros')
def __init__(self, num_classes): super(GoogleNet, self).__init__() self.conv1 = Conv2dBlock(3, 64, kernel_size=7, stride=2, padding=0) self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same") self.conv2 = Conv2dBlock(64, 64, kernel_size=1) self.conv3 = Conv2dBlock(64, 192, kernel_size=3, padding=0) self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same") self.block3a = Inception(192, 64, 96, 128, 16, 32, 32) self.block3b = Inception(256, 128, 128, 192, 32, 96, 64) self.maxpool3 = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same") self.block4a = Inception(480, 192, 96, 208, 16, 48, 64) self.block4b = Inception(512, 160, 112, 224, 24, 64, 64) self.block4c = Inception(512, 128, 128, 256, 24, 64, 64) self.block4d = Inception(512, 112, 144, 288, 32, 64, 64) self.block4e = Inception(528, 256, 160, 320, 32, 128, 128) self.maxpool4 = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="same") self.block5a = Inception(832, 256, 160, 320, 32, 128, 128) self.block5b = Inception(832, 384, 192, 384, 48, 128, 128) self.mean = P.ReduceMean(keep_dims=True) self.dropout = nn.Dropout(keep_prob=0.8) self.flatten = nn.Flatten() self.classifier = nn.Dense(1024, num_classes, weight_init=weight_variable(), bias_init=weight_variable())
def __init__(self, num_class=10, channel=1): super(LeNet5, self).__init__() self.num_class = num_class self.conv1 = nn.Conv2dBnFoldQuant(channel, 6, 5, pad_mode='valid', per_channel=True, quant_delay=900) self.conv2 = nn.Conv2dBnFoldQuant(6, 16, 5, pad_mode='valid', per_channel=True, quant_delay=900) self.fc1 = nn.DenseQuant(16 * 5 * 5, 120, per_channel=True, quant_delay=900) self.fc2 = nn.DenseQuant(120, 84, per_channel=True, quant_delay=900) self.fc3 = nn.DenseQuant(84, self.num_class, per_channel=True, quant_delay=900) self.relu = nn.ActQuant(nn.ReLU(), per_channel=False, quant_delay=900) self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.Flatten()
def __init__(self, num_classes=10, channel=3, phase='train', include_top=True): super(AlexNet, self).__init__() self.conv1 = conv(channel, 64, 11, stride=4, pad_mode="same", has_bias=True) self.conv2 = conv(64, 192, 5, pad_mode="same", has_bias=True) self.conv3 = conv(192, 384, 3, pad_mode="same", has_bias=True) self.conv4 = conv(384, 256, 3, pad_mode="same", has_bias=True) self.conv5 = conv(256, 256, 3, pad_mode="same", has_bias=True) self.relu = P.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='valid') self.include_top = include_top if self.include_top: dropout_ratio = 0.65 if phase == 'test': dropout_ratio = 1.0 self.flatten = nn.Flatten() self.fc1 = fc_with_initialize(6 * 6 * 256, 4096) self.fc2 = fc_with_initialize(4096, 4096) self.fc3 = fc_with_initialize(4096, num_classes) self.dropout = nn.Dropout(dropout_ratio)
def __init__(self, block, layer_nums, in_channels, out_channels, strides, num_classes, use_se=False): super(ResNet, self).__init__() if not len(layer_nums) == len(in_channels) == len(out_channels) == 4: raise ValueError( "the length of layer_num, in_channels, out_channels list must be 4!" ) self.use_se = use_se self.se_block = False if self.use_se: self.se_block = True if self.use_se: self.conv1_0 = _conv3x3(3, 32, stride=2, use_se=self.use_se) self.bn1_0 = _bn(32) self.conv1_1 = _conv3x3(32, 32, stride=1, use_se=self.use_se) self.bn1_1 = _bn(32) self.conv1_2 = _conv3x3(32, 64, stride=1, use_se=self.use_se) else: self.conv1 = _conv7x7(3, 64, stride=2) self.bn1 = _bn(64) self.relu = P.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same") self.layer1 = self._make_layer(block, layer_nums[0], in_channel=in_channels[0], out_channel=out_channels[0], stride=strides[0], use_se=self.use_se) self.layer2 = self._make_layer(block, layer_nums[1], in_channel=in_channels[1], out_channel=out_channels[1], stride=strides[1], use_se=self.use_se) self.layer3 = self._make_layer(block, layer_nums[2], in_channel=in_channels[2], out_channel=out_channels[2], stride=strides[2], use_se=self.use_se, se_block=self.se_block) self.layer4 = self._make_layer(block, layer_nums[3], in_channel=in_channels[3], out_channel=out_channels[3], stride=strides[3], use_se=self.use_se, se_block=self.se_block) self.mean = P.ReduceMean(keep_dims=True) self.flatten = nn.Flatten() self.end_point = _fc(out_channels[3], num_classes, use_se=self.use_se)
def __init__(self, block, num_classes=100, batch_size=32): super(ResNet, self).__init__() self.batch_size = batch_size self.num_classes = num_classes self.conv1 = conv7x7(3, 64, stride=2, padding=0) self.bn1 = bn_with_initialize(64) self.relu = P.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="SAME") self.layer1 = MakeLayer0(block, in_channels=64, out_channels=256, stride=1) self.layer2 = MakeLayer1(block, in_channels=256, out_channels=512, stride=2) self.layer3 = MakeLayer2(block, in_channels=512, out_channels=1024, stride=2) self.layer4 = MakeLayer3(block, in_channels=1024, out_channels=2048, stride=2) self.pool = P.ReduceMean(keep_dims=True) self.fc = fc_with_initialize(512 * block.expansion, num_classes) self.flatten = nn.Flatten()
def __init__(self, block, layer_nums, in_channels, out_channels, strides, num_classes, damping, loss_scale, frequency): super(ResNet, self).__init__() if not len(layer_nums) == len(in_channels) == len(out_channels) == 4: raise ValueError( "the length of layer_num, in_channels, out_channels list must be 4!" ) self.conv1 = _conv7x7(3, 64, stride=2, damping=damping, loss_scale=loss_scale, frequency=frequency) self.bn1 = _bn(64) self.relu = P.ReLU() self.maxpool = P.MaxPoolWithArgmax(padding="same", ksize=3, strides=2) self.layer1 = self._make_layer(block, layer_nums[0], in_channel=in_channels[0], out_channel=out_channels[0], stride=strides[0], damping=damping, loss_scale=loss_scale, frequency=frequency) self.layer2 = self._make_layer(block, layer_nums[1], in_channel=in_channels[1], out_channel=out_channels[1], stride=strides[1], damping=damping, loss_scale=loss_scale, frequency=frequency) self.layer3 = self._make_layer(block, layer_nums[2], in_channel=in_channels[2], out_channel=out_channels[2], stride=strides[2], damping=damping, loss_scale=loss_scale, frequency=frequency) self.layer4 = self._make_layer(block, layer_nums[3], in_channel=in_channels[3], out_channel=out_channels[3], stride=strides[3], damping=damping, loss_scale=loss_scale, frequency=frequency) self.mean = P.ReduceMean(keep_dims=True) self.flatten = nn.Flatten() self.end_point = _fc(out_channels[3], num_classes, damping=damping, loss_scale=loss_scale, frequency=frequency)
def __init__(self): super(Discriminator, self).__init__() self.fc1 = nn.Dense(1024, 400) self.fc2 = nn.Dense(400, 720) self.fc3 = nn.Dense(720, 1024) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() self.flatten = nn.Flatten()
def __init__(self): super(LossNet, self).__init__() self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal', pad_mode='valid') self.bn = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.flatten = nn.Flatten() self.fc = nn.Dense(64 * 222 * 222, 3) # padding=0 self.loss = nn.SoftmaxCrossEntropyWithLogits()
def __init__(self, num_classes=10): super(DefinedNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=0, weight_init="zeros") self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.maxpool = P.MaxPoolWithArgmax(padding="same", ksize=2, strides=2) self.flatten = nn.Flatten() self.fc = nn.Dense(int(56*56*64), num_classes)
def __init__(self, num_classes=10): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=0, weight_init="zeros") self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2) self.flatten = nn.Flatten() self.fc = nn.Dense(int(224 * 224 * 64 / 16), num_classes)
def __init__(self, axis, flag_boottom, flag_top): super(Menet, self).__init__() self.squeeze = P.Squeeze(axis) self.expanddims = P.ExpandDims() self.flatten = nn.Flatten() self.neg = P.Neg() self.axis = axis self.flag_boottom = flag_boottom self.flag_top = flag_top
def __init__(self): super(Net, self).__init__() Tensor(np.ones([64, 3, 7, 7]).astype(np.float32) * 0.01) self.conv = nn.Conv2d(3, 64, (7, 7), pad_mode="same", stride=2) self.relu = nn.ReLU() self.bn = nn.BatchNorm2d(64) self.mean = P.ReduceMean(keep_dims=True) self.flatten = nn.Flatten() self.dense = nn.Dense(64, 12)
def __init__(self, num_classes=10): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(3, ConvNet.output_ch, kernel_size=7, stride=2, pad_mode='pad', padding=3) self.bn1 = nn.BatchNorm2d(ConvNet.output_ch) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same") self.flatten = nn.Flatten() self.fc = nn.Dense( int(ConvNet.image_h * ConvNet.image_w * ConvNet.output_ch / (4 * 4)), num_classes)
def __init__(self, num_class=10, num_channel=1): super(LeNet5, self).__init__() self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid') self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid') self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02)) self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02)) self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02)) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.Flatten()
def test_time_distributed_flatten_no_reshape_axis(): inputs = np.random.randint(0, 10, [3, 4, 5]) flatten = nn.Flatten() output_expect = flatten(Tensor(inputs, mindspore.float32)).asnumpy() inputs = inputs.reshape([3, 1, 4, 5]).repeat(6, axis=1) time_distributed = TestTimeDistributed(flatten, time_axis=1) output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy() for i in range(output.shape[1]): assert np.all(output[:, i, :] == output_expect) print("Flatten op with no reshape axis wrapped successful")
def __init__(self): super(LeNet5, self).__init__() self.conv1 = conv(1, 6, 5) self.conv2 = conv(6, 16, 5) self.fc1 = fc_with_initialize(16 * 5 * 5, 120) self.fc2 = fc_with_initialize(120, 84) self.fc3 = fc_with_initialize(84, 10) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.Flatten()
def __init__(self): super(LeNet5, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5, stride=1, pad_mode='valid') self.conv2 = nn.Conv2d(6, 16, 5, stride=1, pad_mode='valid') self.relu = nn.ReLU() self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.Flatten() self.fc1 = nn.Dense(400, 120) self.fc2 = nn.Dense(120, 84) self.fc3 = nn.Dense(84, 10)
def __init__(self, num_class=10): super(LeNet5, self).__init__() self.cast = P.Cast() self.flatten = nn.Flatten() self.embedding_table = Parameter(initializer("normal", (16, 4), mstype.float32), name="embedding_table") self.embedding = nn.EmbeddingLookup() self.relu = nn.ReLU() self.fc = fc_with_initialize(12, num_class)