Esempio n. 1
0
    def bprop(x, out, dout):
        if mean_flag:
            if F.issubclass_(F.typeof(dout), mstype.tensor):
                dx = all_reduce(dout)
                float_one = F.scalar_cast(1.0, F.dtype(dx))
                num = F.scalar_cast(dev_num, F.dtype(dx))
                dx = mul(dx,
                         cast(F.scalar_to_array(float_one / num), F.dtype(dx)))
            else:
                indices = all_gather(dout.indices)
                grad = all_gather(dout.values)
                float_one = F.scalar_cast(1.0, F.dtype(grad))
                num = F.scalar_cast(dev_num, F.dtype(grad))
                grad = mul(
                    grad,
                    cast(F.scalar_to_array(float_one / num), F.dtype(grad)))
                dx = RowTensor(indices, grad, dout.dense_shape)
        else:
            if F.issubclass_(F.typeof(dout), mstype.tensor):
                dx = all_reduce(dout)
            else:
                indices = all_gather(dout.indices)
                grad = all_gather(dout.values)
                dx = RowTensor(indices, grad, dout.dense_shape)

        return (dx, )
Esempio n. 2
0
    def bprop(x, z, out, dout):
        if mean_flag:
            if F.issubclass_(F.typeof(dout), mstype.tensor):
                if do_mirror:
                    z = F.depend(z, F.assign_add(z, dout))
                    real_grad = all_reduce(z)
                    dx = real_grad
                else:
                    dx = dout
                float_one = F.scalar_cast(1.0, F.dtype(dx))
                num = F.scalar_cast(dev_num, F.dtype(dx))
                dx = mul(dx,
                         cast(F.scalar_to_array(float_one / num), F.dtype(dx)))
            else:
                dx = zeros_like(
                    x)  # The grad accumulation do not support row tensor now
        else:
            if F.issubclass_(F.typeof(dout), mstype.tensor):
                if do_mirror:
                    z = F.depend(z, F.assign_add(z, dout))
                    real_grad = all_reduce(z)
                    dx = real_grad
                else:
                    dx = dout
            else:
                dx = zeros_like(
                    x)  # The grad accumulation do not support row tensor now

        return (dx, zeros_like(z))
Esempio n. 3
0
    def bprop(x, out, dout):
        if mean_flag:
            dx = all_reduce(dout)
            float_one = F.scalar_cast(1.0, F.dtype(dx))
            num = F.scalar_cast(dev_num, F.dtype(dx))
            dx = mul(dx, cast(F.scalar_to_array(float_one / num), F.dtype(dx)))
        else:
            dx = all_reduce(dout)

        return (dx, )
Esempio n. 4
0
def _gauss_kernel_helper(filter_size):
    """gauss kernel helper"""
    filter_size = F.scalar_cast(filter_size, mstype.int32)
    coords = ()
    for i in range(filter_size):
        i_cast = F.scalar_cast(i, mstype.float32)
        offset = F.scalar_cast(filter_size - 1, mstype.float32) / 2.0
        element = i_cast - offset
        coords = coords + (element, )
    g = np.square(coords).astype(np.float32)
    g = Tensor(g)
    return filter_size, g
Esempio n. 5
0
    def construct(self, img1, img2):
        _check_input_4d(F.shape(img1), "img1", self.cls_name)
        _check_input_4d(F.shape(img2), "img2", self.cls_name)
        _check_input_dtype(F.dtype(img1), 'img1', mstype.number_type,
                           self.cls_name)
        P.SameTypeShape()(img1, img2)
        dtype_max_val = _get_dtype_max(F.dtype(img1))
        max_val = F.scalar_cast(self.max_val, F.dtype(img1))
        max_val = _convert_img_dtype_to_float32(max_val, dtype_max_val)
        img1 = _convert_img_dtype_to_float32(img1, dtype_max_val)
        img2 = _convert_img_dtype_to_float32(img2, dtype_max_val)

        c1 = (self.k1 * max_val)**2
        c2 = (self.k2 * max_val)**2

        sim = ()
        mcs = ()

        for i in range(self.level):
            sim, cs = _compute_multi_channel_loss(c1, c2, img1, img2,
                                                  self.multi_convs_list[i],
                                                  self.concat,
                                                  self.reduce_mean)
            mcs += (self.relu(cs), )
            img1, img2 = _downsample(img1, img2, self.avg_pool)

        mcs = mcs[0:-1:1]
        mcs_and_ssim = self.pack(mcs + (self.relu(sim), ))
        mcs_and_ssim = self.pow(mcs_and_ssim, self.weight_tensor)
        ms_ssim = self.prod(mcs_and_ssim, -1)
        loss = self.reduce_mean(ms_ssim, -1)

        return loss
Esempio n. 6
0
def _tensors_allreduce_ps(degree, mean, allgather, allreduce, allreduce_filter,
                          grad, ps_parameter):
    """
    Apply allreduce on gradient.

    Args:
        degree (int): The mean coefficient.
        mean (bool): When mean is true, the mean coefficient (degree) would apply on gradients.
        allgather (Primitive): The communication operator for sparse gradients.
        allreduce (Primitive): The communication operator for gradients.
        allreduce_filter (bool): When it is true, allreduce would apply.
        grad (Tensor): The gradient tensor before operation.
        ps_parameter (bool): Use parameter server or not.

    Returns:
        Tensor, the gradient tensor after operation.
    """
    if ps_parameter:
        return grad

    if allreduce_filter:
        grad = allreduce(grad)
        if mean:
            degree = F.scalar_cast(degree, F.dtype(grad))
            cast_op = P.Cast()
            mul_op = P.Mul()
            grad = mul_op(
                grad, cast_op(F.scalar_to_array(1.0 / degree), F.dtype(grad)))
        return grad
    return grad
Esempio n. 7
0
def _tensors_allreduce_with_sparse_ps(degree, mean, allgather, allreduce,
                                      allreduce_filter, grad, ps_parameter):
    """
    Apply allgather on gradient instead of allreduce for sparse feature.
    Allgather is a communication operation used for distributed deep learning.

    Args:
        degree (int): The mean coefficient.
        mean (bool): When mean is true, the mean coefficient (degree) would apply on gradients.
        allgather (Primitive): The communication operator for sparse gradients.
        allreduce (Primitive): The communication operator for gradients.
        allreduce_filter (bool): When it is true, allgather would apply.
        grad (tuple): The indices, gradient tensor and tensor_shape before operation.
        ps_parameter (bool): Use parameter server or not.

    Returns:
        RowTensor, the gradient after operation.
    """
    if ps_parameter:
        return grad

    if allreduce_filter:
        indices = allgather(grad.indices)
        dout = allgather(grad.values)
        if mean:
            degree = F.scalar_cast(degree, F.dtype(grad.values))
            cast_op = P.Cast()
            mul_op = P.Mul()
            dout = mul_op(
                dout, cast_op(F.scalar_to_array(1.0 / degree), F.dtype(dout)))
        grad = RowTensor(indices, dout, grad.dense_shape)
    return grad
Esempio n. 8
0
def _tensors_allreduce_with_sparse(degree, mean, allgather, allreduce_filter,
                                   grad, allreduce):
    """
    Apply allgather on gradient instead of allreduce for sparse feature.
    Allgather is a communication operation used for distributed deep learning.

    Args:
        degree (int): The mean coefficient.
        mean (bool): When mean is true, the mean coefficient (degree) would apply on gradients.
        allgather (Primitive): The communication operator for sparse gradients.
        allreduce_filter (bool): When it is true, allgather would apply.
        grad (IndexedSlices): The gradient before operation.
        allreduce (Primitive): The communication operator for gradients.

    Returns:
        IndexedSlices, the gradient after operation.
    """
    if allreduce_filter:
        indices = allgather(grad.indices())
        dout = allgather(grad.values())
        if mean:
            degree = F.scalar_cast(degree, F.dtype(grad.values()))
            cast_op = P.Cast()
            mul_op = P.Mul()
            dout = mul_op(
                dout, cast_op(F.scalar_to_array(1.0 / degree), F.dtype(dout)))
        grad = IndexedSlices(indices, dout, grad.dense_shape())
    return grad
Esempio n. 9
0
    def bprop(x, y, z, out, dout):
        do_mirror = equal(y, grad_accumulation_step)
        do_mirror = reshape(do_mirror, (()))
        if mean_flag:
            if F.issubclass_(F.typeof(dout), mstype.tensor):
                if do_mirror:
                    tmp = z + dout
                    real_grad = all_reduce(tmp)
                    dx = real_grad - z
                else:
                    dx = dout
                float_one = F.scalar_cast(1.0, F.dtype(dx))
                num = F.scalar_cast(dev_num, F.dtype(dx))
                dx = mul(dx, cast(F.scalar_to_array(float_one/num), F.dtype(dx)))
            else:
                if do_mirror:
                    indices = all_gather(dout.indices)
                    grad = all_gather(dout.values)
                else:
                    indices = dout.indices
                    grad = dout.values
                float_one = F.scalar_cast(1.0, F.dtype(grad))
                num = F.scalar_cast(dev_num, F.dtype(grad))
                grad = mul(grad, cast(F.scalar_to_array(float_one/num), F.dtype(grad)))
                dx = RowTensor(indices, grad, dout.dense_shape)
        else:
            if F.issubclass_(F.typeof(dout), mstype.tensor):
                if do_mirror:
                    tmp = z + dout
                    real_grad = all_reduce(tmp)
                    dx = real_grad - z
                else:
                    dx = dout
            else:
                if do_mirror:
                    indices = all_gather(dout.indices)
                    grad = all_gather(dout.values)
                else:
                    indices = dout.indices
                    grad = dout.values
                dx = RowTensor(indices, grad, dout.dense_shape)

        return (dx, zeros_like(y), zeros_like(z))
Esempio n. 10
0
def _convert_img_dtype_to_float32(img, max_val):
    """convert img dtype to float32"""
    # Ususally max_val is 1.0 or 255, we will do the scaling if max_val > 1.
    # We will scale img pixel value if max_val > 1. and just cast otherwise.
    ret = F.cast(img, mstype.float32)
    max_val = F.scalar_cast(max_val, mstype.float32)
    if max_val > 1.:
        scale = 1. / max_val
        ret = ret * scale
    return ret
Esempio n. 11
0
    def construct(self, img1, img2):
        _check_input_4d(F.shape(img1), "img1", self.cls_name)
        _check_input_4d(F.shape(img2), "img2", self.cls_name)
        P.SameTypeShape()(img1, img2)
        dtype_max_val = _get_dtype_max(F.dtype(img1))
        max_val = F.scalar_cast(self.max_val, F.dtype(img1))
        max_val = _convert_img_dtype_to_float32(max_val, dtype_max_val)
        img1 = _convert_img_dtype_to_float32(img1, dtype_max_val)
        img2 = _convert_img_dtype_to_float32(img2, dtype_max_val)

        mse = P.ReduceMean()(F.square(img1 - img2), (-3, -2, -1))
        psnr = 10 * P.Log()(F.square(max_val) / mse) / F.scalar_log(10.0)

        return psnr
Esempio n. 12
0
    def construct(self, img1, img2):
        _check_input_dtype(F.dtype(img1), "img1", [mstype.float32, mstype.float16], self.cls_name)
        _check_input_filter_size(F.shape(img1), "img1", self.filter_size, self.cls_name)
        P.SameTypeShape()(img1, img2)
        dtype_max_val = _get_dtype_max(F.dtype(img1))
        max_val = F.scalar_cast(self.max_val, F.dtype(img1))
        max_val = _convert_img_dtype_to_float32(max_val, dtype_max_val)
        img1 = _convert_img_dtype_to_float32(img1, dtype_max_val)
        img2 = _convert_img_dtype_to_float32(img2, dtype_max_val)

        c1 = (self.k1 * max_val) ** 2
        c2 = (self.k2 * max_val) ** 2

        ssim_ave_channel, _ = _compute_multi_channel_loss(c1, c2, img1, img2, self.conv, self.concat, self.reduce_mean)
        loss = self.reduce_mean(ssim_ave_channel, -1)

        return loss
Esempio n. 13
0
def _tensors_allreduce_mean(mul, degree, allreduce, parameters):
    """
    Apply allreduce on parameters.

    Args:
        mul(Primitive): The mul operator for parameters.
        degree (int): The mean coefficient.
        allreduce (Primitive): The communication operator for parameters.
        parameters (Tensor): The parameters before operation.

    Returns:
        Tensor, the parameters after operation.
    """
    degree = F.scalar_cast(degree, F.dtype(parameters))
    parameters = allreduce(parameters)
    cast_op = P.Cast()
    return mul(parameters,
               cast_op(F.scalar_to_array(1.0 / degree), F.dtype(parameters)))
Esempio n. 14
0
def _tensors_allreduce_mean(mul, degree, allreduce_filter, grad):
    """
    Apply mean and allreduce on gradient. Allreduce is a communication operation used for distributed deep learning.

    Args:
        mul (Primitive): Div operation.
        degree (int): The mean coefficient.
        allreduce_filter (bool): When it is true, allreduce would apply.
        grad (Tensor): The gradient tensor before operation.

    Returns:
        Tensor, the gradient tensor after operation.
    """
    if allreduce_filter:
        degree = F.scalar_cast(degree, F.dtype(grad))
        grad = _all_reduce(grad)
        cast_op = P.Cast()
        return mul(grad, cast_op(F.scalar_to_array(1.0/degree), F.dtype(grad)))
    return grad
Esempio n. 15
0
def _tensors_allreduce_mean_with_sparse(mul, degree, allreduce_filter, grad):
    """
    Apply mean and allgather on gradient instead of allreduce for sparse feature.
    Allgather is a communication operation used for distributed deep learning.

    Args:
        mul (Primitive): Div operation.
        degree (int): The mean coefficient.
        allreduce_filter (bool): When it is true, allgather would apply.
        grad (Tuple): The indices, gradient tensor and tensor_shape before operation.

    Returns:
        Tuple, include indices, the gradient tensor and tensor_shape after operation.
    """
    if allreduce_filter:
        indices = _all_gather(grad[0])
        degree = F.scalar_cast(degree, F.dtype(grad[1]))
        dout = _all_gather(grad[1])
        cast_op = P.Cast()
        dout = mul(dout, cast_op(F.scalar_to_array(1.0 / degree), F.dtype(dout)))
        grad = (indices, dout, grad[2])
    return grad
Esempio n. 16
0
def _tensors_allreduce(degree, mean, allgather, allreduce, allreduce_filter,
                       grad):
    """
    Apply allreduce on gradient.

    Args:
        degree (int): The mean coefficient.
        mean (bool): When mean is true, the mean coefficient (degree) would apply on gradients.
        allgather (Primitive): The communication operator for sparse gradients.
        allreduce (Primitive): The communication operator for gradients.
        allreduce_filter (bool): When it is true, allreduce would apply.
        grad (Tensor): The gradient tensor before operation.

    Returns:
        Tensor, the gradient tensor after operation.
    """
    if allreduce_filter:
        grad = allreduce(grad)
        if mean:
            degree = F.scalar_cast(degree, F.dtype(grad))
            grad = F.tensor_mul(
                grad, F.cast(F.scalar_to_array(1.0 / degree), F.dtype(grad)))
        return grad
    return grad
Esempio n. 17
0
 def fx_cast(x):
     output = F.scalar_cast(x, input_t)
     return output
def _tensors_allreduce_mean(mul, degree, grad):
    degree = F.scalar_cast(degree, F.dtype(grad))
    grad = _all_reduce_A(grad)
    cast_op = P.Cast()
    return mul(grad, cast_op(F.scalar_to_array(1.0 / degree), F.dtype(grad)))
Esempio n. 19
0
 def fn_cast(x, t):
     output = F.scalar_cast(x, t)
     return output