Esempio n. 1
0
    def __init__(self, H, W):
        super(STN, self).__init__()
        batch_size = 1
        x = np.linspace(-1.0, 1.0, H)
        y = np.linspace(-1.0, 1.0, W)
        x_t, y_t = np.meshgrid(x, y)
        x_t = Tensor(x_t, mindspore.float32)
        y_t = Tensor(y_t, mindspore.float32)
        expand_dims = P.ExpandDims()
        x_t = expand_dims(x_t, 0)
        y_t = expand_dims(y_t, 0)
        flatten = P.Flatten()
        x_t_flat = flatten(x_t)
        y_t_flat = flatten(y_t)
        oneslike = P.OnesLike()
        ones = oneslike(x_t_flat)
        concat = P.Concat()
        sampling_grid = concat((x_t_flat, y_t_flat, ones))
        self.sampling_grid = expand_dims(sampling_grid, 0)

        batch_size = 128
        batch_idx = np.arange(batch_size)
        batch_idx = batch_idx.reshape((batch_size, 1, 1))
        self.batch_idx = Tensor(batch_idx, mindspore.float32)
        self.zero = Tensor(np.zeros([]), mindspore.float32)
Esempio n. 2
0
    def __init__(self,
                 scale=1.0,
                 shift=0.0,
                 name='ScalarAffine'):
        """
        Constructor of ScalarAffine Bijector.
        """
        param = dict(locals())
        validator.check_value_type(
            'scale', scale, [int, float], type(self).__name__)
        validator.check_value_type(
            'shift', shift, [int, float], type(self).__name__)
        super(ScalarAffine, self).__init__(
            is_constant_jacobian=True,
            is_injective=True,
            name=name,
            dtype=None,
            param=param)

        self._scale = cast_to_tensor(scale)
        self._shift = cast_to_tensor(shift)

        self.abs = P.Abs()
        self.oneslike = P.OnesLike()
        self.dtypeop = P.DType()
        self.cast = P.Cast()
        self.log = log_generic
Esempio n. 3
0
 def __init__(self, num_sampled, num_classes, num_true=1,
              sampled_values=None, remove_accidental_hits=True, seed=0,
              reduction='none'):
     super(SampledSoftmaxLoss, self).__init__()
     self.num_sampled = num_sampled
     self.num_classes = num_classes
     self.num_true = num_true
     self.sampled_values = sampled_values
     self.remove_accidental_hits = remove_accidental_hits
     self.seed = seed
     self.sampler = P.UniformSampler(
         num_true,
         num_sampled,
         True,
         num_classes,
         seed,
         remove_accidental_hits)
     self.cast = P.Cast()
     self.reshape = P.Reshape()
     self.shape = P.Shape()
     self.exp = P.Exp()
     self.log = P.Log()
     self.slice_op = P.Slice()
     self.matmul = P.MatMul(False, True)
     self.gather_v2 = P.GatherV2()
     self.reduce_max_true = P.ReduceMax(True)
     self.reduce_sum = P.ReduceSum()
     self.reduce_sum_true = P.ReduceSum(True)
     self.concat_dim0 = P.Concat(0)
     self.concat_dim1 = P.Concat(1)
     self.ones_like = P.OnesLike()
     self.zeros_like = P.ZerosLike()
     self.mul = P.Mul()
     self.expand_dims = P.ExpandDims()
Esempio n. 4
0
 def __init__(self, weight=None, reduction='none'):
     super(BCELoss, self).__init__()
     self.binary_cross_entropy = P.BinaryCrossEntropy(reduction=reduction)
     self.weight_one = weight is None
     if not self.weight_one:
         self.weight = weight
     else:
         self.ones = P.OnesLike()
Esempio n. 5
0
    def __init__(self,
                 num_sampled,
                 num_classes,
                 num_true=1,
                 sampled_values=None,
                 remove_accidental_hits=True,
                 seed=0,
                 reduction='none'):
        super(SampledSoftmaxLoss, self).__init__(reduction)

        if num_true < 1:
            raise ValueError(f"num_true {num_true} is less than 1.")
        if seed < 0:
            raise ValueError(f"seed {seed} is less than 0.")
        if num_sampled > num_classes:
            raise ValueError(
                f"num_sampled {num_sampled} is great than num_classes {num_classes}."
            )
        if num_true > num_classes:
            raise ValueError(
                f"num_true {num_true} is great than num_classes {num_classes}."
            )
        if sampled_values is not None:
            if not isinstance(sampled_values, (list, tuple)):
                raise TypeError(
                    f"sampled_values {sampled_values} is not a list.")
            if len(sampled_values) != 3:
                raise ValueError(
                    f"sampled_values size {len(sampled_values)} is not 3.")

        self.num_sampled = num_sampled
        self.num_classes = num_classes
        self.num_true = num_true
        self.sampled_values = sampled_values
        self.remove_accidental_hits = remove_accidental_hits
        self.seed = seed
        self.sampler = P.LogUniformCandidateSampler(num_true, num_sampled,
                                                    True, num_classes, seed)
        self.cast = P.Cast()
        self.reshape = P.Reshape()
        self.shape = P.Shape()
        self.exp = P.Exp()
        self.log = P.Log()
        self.slice_op = P.Slice()
        self.matmul = P.MatMul(False, True)
        self.gather_v2 = P.Gather()
        self.reduce_max_true = P.ReduceMax(True)
        self.reduce_sum = P.ReduceSum()
        self.reduce_sum_true = P.ReduceSum(True)
        self.concat_dim0 = P.Concat(0)
        self.concat_dim1 = P.Concat(1)
        self.ones_like = P.OnesLike()
        self.zeros_like = P.ZerosLike()
        self.mul = P.Mul()
        self.expand_dims = P.ExpandDims()
        self.dtype = P.DType()
        self.compute_accidental_hits = P.ComputeAccidentalHits(num_true)
        self.scatter_nd = P.ScatterNd()
Esempio n. 6
0
 def __init__(self, reduction='mean', weight=None, pos_weight=None):
     super(BCEWithLogitsLoss, self).__init__()
     self.bce_with_logits_loss = P.BCEWithLogitsLoss(reduction=reduction)
     if isinstance(weight, Parameter):
         raise TypeError(f"For {self.cls_name}, weight can not be Parameter.")
     if isinstance(pos_weight, Parameter):
         raise TypeError(f"For {self.cls_name}, pos_weight can not be Parameter.")
     self.weight = weight
     self.pos_weight = pos_weight
     self.ones = P.OnesLike()
Esempio n. 7
0
    def __init__(self):
        super(CEWithIgnoreIndex3D, self).__init__()

        self.exp = P.Exp()
        self.sum = P.ReduceSum()
        self.reshape = P.Reshape()
        self.log = P.Log()
        self.cast = P.Cast()
        self.eps_const = Tensor(eps, dtype=mstype.float32)
        self.ones = P.OnesLike()
        self.onehot = P.OneHot()
        self.on_value = Tensor(1.0, mstype.float32)
        self.off_value = Tensor(0.0, mstype.float32)
        self.relu = P.ReLU()
        self.resum = P.ReduceSum(keep_dims=False)
Esempio n. 8
0
    def __init__(self, scale=1.0, shift=0.0, name='ScalarAffine'):
        """
        Constructor of scalar affine bijector.
        """
        param = dict(locals())
        validator.check_value_type('scale', scale, [float], name)
        validator.check_value_type('shift', shift, [float], name)
        self._scale = cast_to_tensor(scale)
        self._shift = cast_to_tensor(shift)
        super(ScalarAffine, self).__init__(is_constant_jacobian=True,
                                           is_injective=True,
                                           name=name,
                                           dtype=None,
                                           param=param)

        self.log = P.Log()
        self.oneslike = P.OnesLike()
Esempio n. 9
0
    def __init__(
        self,
        d_min=1e-3,
        d_max=1.0,
        num_rbf=32,
        sigma=None,
        trainable=False,
        min_cutoff=False,
        max_cutoff=False,
    ):
        super().__init__()
        if d_max <= d_min:
            raise ValueError(
                'The argument "d_max" must be larger' +
                'than the argument "d_min" in LogGaussianDistribution!')

        if d_min <= 0:
            raise ValueError('The argument "d_min" must be ' +
                             ' larger than 0 in LogGaussianDistribution!')

        self.d_max = d_max
        self.d_min = d_min / d_max
        self.min_cutoff = min_cutoff
        self.max_cutoff = max_cutoff

        self.log = P.Log()
        self.exp = P.Exp()
        self.max = P.Maximum()
        self.min = P.Minimum()
        self.zeroslike = P.ZerosLike()
        self.oneslike = P.OnesLike()

        # linspace = nn.LinSpace(log_dmin,0,n_gaussians)

        log_dmin = math.log(self.d_min)
        # self.centers = linspace()
        # self.ones = self.oneslike(self.centers)
        centers = np.linspace(log_dmin, 0, num_rbf)
        self.centers = Tensor(centers, ms.float32)
        ones = np.ones_like(centers)
        self.ones = Tensor(ones, ms.float32)

        if sigma is None:
            sigma = -log_dmin / (num_rbf - 1)
        self.rescale = -0.5 / (sigma * sigma)
Esempio n. 10
0
    def __init__(self,
                 config,
                 num_hidden_layers,
                 attn_embed_dim,
                 num_attn_heads=12,
                 seq_length=64,
                 intermediate_size=3072,
                 attn_dropout_prob=0.1,
                 initializer_range=0.02,
                 hidden_dropout_prob=0.1,
                 hidden_act="relu",
                 compute_type=mstype.float32,
                 embedding_lookup=None,
                 positional_embedding=None,
                 projection=None):
        super(TransformerDecoderStep, self).__init__(auto_prefix=False)
        self.embedding_lookup = embedding_lookup
        self.positional_embedding = positional_embedding
        self.projection = projection
        self.seq_length = seq_length
        self.decoder = TransformerDecoder(attn_embed_dim=attn_embed_dim,
                                          num_attn_heads=num_attn_heads,
                                          decoder_layers=num_hidden_layers,
                                          intermediate_size=intermediate_size,
                                          attn_dropout_prob=attn_dropout_prob,
                                          initializer_range=initializer_range,
                                          dropout_prob=hidden_dropout_prob,
                                          hidden_act=hidden_act,
                                          compute_type=compute_type)

        self.ones_like = P.OnesLike()
        self.shape = P.Shape()

        self._create_attention_mask_from_input_mask = CreateAttentionMaskFromInputMask(
            config)
        self.expand = P.ExpandDims()
        self.multiply = P.Mul()

        ones = np.ones(shape=(seq_length, seq_length))
        self.future_mask = Tensor(np.tril(ones), dtype=mstype.float32)

        self.cast_compute_type = SaturateCast(dst_type=compute_type)
        self.scale = Tensor([math.sqrt(float(attn_embed_dim))],
                            dtype=mstype.float32)
Esempio n. 11
0
    def __init__(self, scale=1.0, shift=0.0, name='ScalarAffine'):
        """
        Constructor of ScalarAffine Bijector.
        """
        param = dict(locals())
        param['param_dict'] = {'scale': scale, 'shift': shift}
        super(ScalarAffine, self).__init__(is_constant_jacobian=True,
                                           is_injective=True,
                                           name=name,
                                           dtype=None,
                                           param=param)

        self._scale = self._add_parameter(scale, 'scale')
        self._shift = self._add_parameter(shift, 'shift')

        self.abs = P.Abs()
        self.oneslike = P.OnesLike()
        self.dtypeop = P.DType()
        self.cast = P.Cast()
        self.log = log_generic
Esempio n. 12
0
    def test_mode_init(self, config):
        self.test_batch_size = config.test_batch_size
        self.split = P.Split(axis=0, output_num=self.test_batch_size)
        self.split_shape = P.Split(axis=0, output_num=4)
        self.split_scores = P.Split(axis=1, output_num=self.num_classes)
        self.split_cls = P.Split(axis=0, output_num=self.num_classes - 1)
        self.tile = P.Tile()
        self.gather = P.GatherNd()

        self.rpn_max_num = config.rpn_max_num

        self.zeros_for_nms = Tensor(
            np.zeros((self.rpn_max_num, 3)).astype(self.dtype))
        self.ones_mask = np.ones((self.rpn_max_num, 1)).astype(np.bool)
        self.zeros_mask = np.zeros((self.rpn_max_num, 1)).astype(np.bool)
        self.bbox_mask = Tensor(
            np.concatenate((self.ones_mask, self.zeros_mask, self.ones_mask,
                            self.zeros_mask),
                           axis=1))
        self.nms_pad_mask = Tensor(
            np.concatenate((self.ones_mask, self.ones_mask, self.ones_mask,
                            self.ones_mask, self.zeros_mask),
                           axis=1))

        self.test_score_thresh = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(self.dtype) *
            config.test_score_thr)
        self.test_score_zeros = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(self.dtype) * 0)
        self.test_box_zeros = Tensor(
            np.ones((self.rpn_max_num, 4)).astype(self.dtype) * -1)
        self.test_iou_thr = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(self.dtype) *
            config.test_iou_thr)
        self.test_max_per_img = config.test_max_per_img
        self.nms_test = P.NMSWithMask(config.test_iou_thr)
        self.softmax = P.Softmax(axis=1)
        self.logicand = P.LogicalAnd()
        self.oneslike = P.OnesLike()
        self.test_topk = P.TopK(sorted=True)
        self.test_num_proposal = self.test_batch_size * self.rpn_max_num
Esempio n. 13
0
    def __init__(self,
                 config,
                 use_one_hot_embeddings,
                 compute_type=mstype.float32):
        super(BeamDecoderStep, self).__init__(auto_prefix=True)

        self.vocab_size = config.vocab_size
        self.word_embed_dim = config.hidden_size
        self.embedding_lookup = EmbeddingLookup(
            is_training=False,
            vocab_size=config.vocab_size,
            embed_dim=self.word_embed_dim,
            use_one_hot_embeddings=use_one_hot_embeddings)

        self.projection = PredLogProbs(batch_size=config.batch_size *
                                       config.beam_width,
                                       seq_length=1,
                                       width=config.vocab_size,
                                       compute_type=config.compute_type)

        self.seq_length = config.max_decode_length
        self.decoder = GNMTDecoder(config,
                                   is_training=False,
                                   infer_beam_width=config.beam_width)

        self.ones_like = P.OnesLike()
        self.shape = P.Shape()

        self.create_att_paddings_from_input_paddings = CreateAttentionPaddingsFromInputPaddings(
            config, is_training=False)
        self.expand = P.ExpandDims()
        self.multiply = P.Mul()

        ones = np.ones(shape=(config.max_decode_length,
                              config.max_decode_length))
        self.future_mask = Tensor(np.tril(ones), dtype=mstype.float32)

        self.cast_compute_type = SaturateCast(dst_type=compute_type)

        self.transpose = P.Transpose()
        self.transpose_orders = (1, 0, 2)
Esempio n. 14
0
 def construct(self, x, mean, variance, global_step):
     if self.is_gpu:
         if self.training:
             batch_mean, batch_std, running_mean, running_std = self.bn_train(
                 x, mean, variance, global_step)
         else:
             batch_mean, batch_std, running_mean, running_std = self.bn_infer(
                 x, mean, variance, global_step)
     else:
         if self.training:
             x_sum, x_square_sum = self.bn_reduce(x)
             _, batch_mean, batch_std, running_mean, running_std, mean_updated, variance_updated = \
                 self.bn_update(x, x_sum, x_square_sum, mean, variance)
             P.Assign()(mean, mean_updated)
             P.Assign()(variance, variance_updated)
         else:
             batch_mean = P.ZerosLike()(variance)
             batch_std = P.OnesLike()(variance)
             running_mean = P.TensorAdd()(mean, 0.)
             running_std = P.Sqrt()(P.TensorAdd()(variance, self.epsilon))
     return batch_mean, batch_std, running_mean, running_std
Esempio n. 15
0
    def __init__(self):
        super(ComputeDescriptor, self).__init__()
        self.reshape = P.Reshape()
        self.transpose = P.Transpose()
        self.cast = P.Cast()
        self.rsum = P.ReduceSum()
        self.broadcastto = P.BroadcastTo((1, 192 * 138))
        self.broadcastto1 = P.BroadcastTo((1, 192, 138, 3))
        self.broadcastto2 = P.BroadcastTo((1, 192, 138, 3, 3))
        self.broadcastto3 = P.BroadcastTo((1, 192, 138, 4))
        self.broadcastto4 = P.BroadcastTo((1, 192, 138, 4, 3))

        self.expdims = P.ExpandDims()
        self.concat = P.Concat(axis=3)
        self.gather = P.GatherV2()
        self.mul = P.Mul()
        self.slice = P.Slice()
        self.square = P.Square()
        self.inv = P.Inv()
        self.sqrt = P.Sqrt()
        self.ones = P.OnesLike()
        self.eye = P.Eye()
Esempio n. 16
0
 def __init__(self,
              temperature=0.07,
              contrast_mode='all',
              base_temperature=0.07):
     super(SupConLoss, self).__init__()
     self.temperature = temperature
     self.contrast_mode = contrast_mode
     self.base_temperature = base_temperature
     self.normalize = P.L2Normalize(axis=2)
     self.eye = P.Eye()
     self.unbind = P.Unstack(axis=1)
     self.cat = P.Concat(axis=0)
     self.matmul = P.MatMul()
     self.div = P.Div()
     self.transpose = P.Transpose()
     self.maxes = P.ArgMaxWithValue(axis=1, keep_dims=True)
     self.tile = P.Tile()
     self.scatter = P.ScatterNd()
     self.oneslike = P.OnesLike()
     self.exp = P.Exp()
     self.sum = P.ReduceSum(keep_dims=True)
     self.log = P.Log()
     self.reshape = P.Reshape()
     self.mean = P.ReduceMean()
Esempio n. 17
0
    def __init__(
        self,
        dim_atom_embed,
        num_rbf,
        n_heads=8,
        activation=Swish(),
        max_cycles=10,
        time_embedding=0,
        use_pondering=True,
        fixed_cycles=False,
        use_filter=True,
        inside_filter=None,
        act_threshold=0.9,
        fixed_neigh=False,
    ):
        super().__init__(gather_dim=dim_atom_embed, fixed_neigh=fixed_neigh)
        if dim_atom_embed % n_heads != 0:
            raise ValueError('The term "dim_atom_embed" cannot be divisible ' +
                             'by the term "n_heads" in AirNetIneteraction! ')

        self.n_heads = n_heads
        self.max_cycles = max_cycles
        self.dim_atom_embed = dim_atom_embed
        self.num_rbf = num_rbf
        self.time_embedding = time_embedding

        if fixed_cycles:
            self.flexable_cycels = False
        else:
            self.flexable_cycels = True

        self.use_filter = use_filter
        if self.use_filter:
            # self.filter = Filter(num_rbf,dim_atom_embed,activation)
            self.filter = Dense(num_rbf,
                                dim_atom_embed,
                                has_bias=True,
                                activation=None)

        self.positional_embedding = PositionalEmbedding(dim_atom_embed)
        self.multi_head_attention = MultiheadAttention(dim_atom_embed, n_heads)

        self.act_threshold = act_threshold
        self.act_epsilon = 1.0 - act_threshold

        self.use_pondering = use_pondering
        self.pondering = None
        self.act_weight = None
        if self.max_cycles > 1:
            if self.use_pondering:
                self.pondering = Pondering(dim_atom_embed * 3, bias_const=3)
                self.act_weight = ACTWeight(self.act_threshold)
            else:
                if self.flexable_cycels:
                    raise ValueError(
                        'The term "fixed_cycles" must be True ' +
                        'when the pondering network is None in AirNetIneteraction! '
                    )
        self.fixed_weight = Tensor(1.0 / max_cycles, ms.float32)

        self.max = P.Maximum()
        self.min = P.Minimum()
        self.concat = P.Concat(-1)
        self.pack = P.Pack()
        self.reducesum = P.ReduceSum()
        self.squeeze = P.Squeeze(-1)
        self.ones_like = P.OnesLike()
        self.zeros_like = P.ZerosLike()
        self.zeros = P.Zeros()
Esempio n. 18
0
     'skip': ['backward']}),
 ('DescConst', {
     'block': Tensor(np.array([2], np.float32)),
     'desc_inputs': [],
     'desc_bprop': [[1]],
     'skip': ['backward'],
     'add_fake_input': True}),
 ('Fill', {
     'block': P.Fill(),
     'desc_const': [mstype.float32, (2, 3), 1.0],
     'desc_inputs': [],
     'desc_bprop': [[2, 3]],
     'skip': ['backward'],
     'add_fake_input': True}),
 ('OnesLike', {
     'block': P.OnesLike(),
     'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
     'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
 }),
 ('ZerosLike', {
     'block': P.ZerosLike(),
     'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
     'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
 }),
 ('Softmax', {
     'block': P.Softmax(),
     'desc_inputs': [[5, 5]],
     'desc_bprop': [[5, 5]]}),
 ('DepthwiseConv2dNative_1', {
     'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
     'desc_inputs': [[10, 32, 32, 32], [1, 32, 3, 3]],
Esempio n. 19
0
 def __init__(self, strategy1, strategy2):
     super().__init__()
     self.matmul = P.MatMul().set_strategy(strategy1)
     self.oneslike = P.OnesLike().set_strategy(strategy2)
     self.matmul2 = P.MatMul().set_strategy(strategy1)
Esempio n. 20
0
    def __init__(self, shape, threshold=0.9):
        super().__init__()
        self.threshold = threshold

        self.zeros_like = P.ZerosLike()
        self.ones_like = P.OnesLike()
Esempio n. 21
0
    reduce_sum = ops.ReduceSum(keep_dims=False)
    square = ops.Square()
    argmin = ops.Argmin()

    centroid_matrix = reshape(tile(centroids, (num_pts, 1)),
                              (num_pts, k, num_feats))
    point_matrix = reshape(tile(data_points, (1, k)), (num_pts, k, num_feats))
    distances = reduce_sum(square(point_matrix - centroid_matrix), 2)
    centroid_group = argmin(distances)

    return centroid_group


# 计算三个堆的平均距离更新堆中新的中心点
unsorted_segment_sum = ops.UnsortedSegmentSum()
ones_like = ops.OnesLike()


def data_group_avg(group_ids, data):
    # 分组求和
    sum_total = unsorted_segment_sum(data, group_ids, 3)
    #计算堆大小
    num_total = unsorted_segment_sum(ones_like(data), group_ids, 3)
    #求距离均值
    avg_by_group = sum_total / num_total
    return avg_by_group


assign = ops.Assign()
# 遍历循环训练,更新每组分类的中心点
for i in range(generations):
Esempio n. 22
0
    def __init__(self, config):
        super(Deeptext_VGG16, self).__init__()
        self.train_batch_size = config.batch_size
        self.num_classes = config.num_classes
        self.anchor_scales = config.anchor_scales
        self.anchor_ratios = config.anchor_ratios
        self.anchor_strides = config.anchor_strides
        self.target_means = tuple(config.rcnn_target_means)
        self.target_stds = tuple(config.rcnn_target_stds)

        # Anchor generator
        anchor_base_sizes = None
        self.anchor_base_sizes = list(
            self.anchor_strides
        ) if anchor_base_sizes is None else anchor_base_sizes

        self.anchor_generators = []
        for anchor_base in self.anchor_base_sizes:
            self.anchor_generators.append(
                AnchorGenerator(anchor_base, self.anchor_scales,
                                self.anchor_ratios))

        self.num_anchors = len(self.anchor_ratios) * len(self.anchor_scales)

        featmap_sizes = config.feature_shapes
        assert len(featmap_sizes) == len(self.anchor_generators)

        self.anchor_list = self.get_anchors(featmap_sizes)

        # Rpn and rpn loss
        self.gt_labels_stage1 = Tensor(
            np.ones((self.train_batch_size, config.num_gts)).astype(np.uint8))
        self.rpn_with_loss = RPN(config, self.train_batch_size,
                                 config.rpn_in_channels,
                                 config.rpn_feat_channels, config.num_anchors,
                                 config.rpn_cls_out_channels)

        # Proposal
        self.proposal_generator = Proposal(config, self.train_batch_size,
                                           config.activate_num_classes,
                                           config.use_sigmoid_cls)
        self.proposal_generator.set_train_local(config, True)
        self.proposal_generator_test = Proposal(config, config.test_batch_size,
                                                config.activate_num_classes,
                                                config.use_sigmoid_cls)
        self.proposal_generator_test.set_train_local(config, False)

        # Assign and sampler stage two
        self.bbox_assigner_sampler_for_rcnn = BboxAssignSampleForRcnn(
            config, self.train_batch_size, config.num_bboxes_stage2, True)
        self.decode = P.BoundingBoxDecode(max_shape=(576, 960), means=self.target_means, \
                                          stds=self.target_stds)

        # Rcnn
        self.rcnn = Rcnn(
            config, config.rcnn_in_channels * config.roi_layer['out_size'] *
            config.roi_layer['out_size'], self.train_batch_size,
            self.num_classes)

        # Op declare
        self.squeeze = P.Squeeze()
        self.cast = P.Cast()

        self.concat = P.Concat(axis=0)
        self.concat_1 = P.Concat(axis=1)
        self.concat_2 = P.Concat(axis=2)
        self.reshape = P.Reshape()
        self.select = P.Select()
        self.greater = P.Greater()
        self.transpose = P.Transpose()

        # Test mode
        self.test_batch_size = config.test_batch_size
        self.split = P.Split(axis=0, output_num=self.test_batch_size)
        self.split_shape = P.Split(axis=0, output_num=4)
        self.split_scores = P.Split(axis=1, output_num=self.num_classes)
        self.split_cls = P.Split(axis=0, output_num=self.num_classes - 1)
        self.tile = P.Tile()
        self.gather = P.GatherNd()

        self.rpn_max_num = config.rpn_max_num

        self.zeros_for_nms = Tensor(
            np.zeros((self.rpn_max_num, 3)).astype(np.float32))
        self.ones_mask = np.ones((self.rpn_max_num, 1)).astype(np.bool)
        self.zeros_mask = np.zeros((self.rpn_max_num, 1)).astype(np.bool)
        self.bbox_mask = Tensor(
            np.concatenate((self.ones_mask, self.zeros_mask, self.ones_mask,
                            self.zeros_mask),
                           axis=1))
        self.nms_pad_mask = Tensor(
            np.concatenate((self.ones_mask, self.ones_mask, self.ones_mask,
                            self.ones_mask, self.zeros_mask),
                           axis=1))

        self.test_score_thresh = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(np.float32) *
            config.test_score_thr)
        self.test_score_zeros = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(np.float32) * 0)
        self.test_box_zeros = Tensor(
            np.ones((self.rpn_max_num, 4)).astype(np.float32) * -1)
        self.test_iou_thr = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(np.float32) *
            config.test_iou_thr)
        self.test_max_per_img = config.test_max_per_img
        self.nms_test = P.NMSWithMask(config.test_iou_thr)
        self.softmax = P.Softmax(axis=1)
        self.logicand = P.LogicalAnd()
        self.oneslike = P.OnesLike()
        self.test_topk = P.TopK(sorted=True)
        self.test_num_proposal = self.test_batch_size * self.rpn_max_num

        # Improve speed
        self.concat_start = (self.num_classes - 2)
        self.concat_end = (self.num_classes - 1)

        # Init tensor
        self.use_ambigous_sample = config.use_ambigous_sample
        roi_align_index = [
            np.array(np.ones((config.num_expected_pos_stage2 +
                              config.num_expected_neg_stage2, 1)) * i,
                     dtype=np.float32) for i in range(self.train_batch_size)
        ]
        if self.use_ambigous_sample:
            roi_align_index = [
                np.array(np.ones((config.num_expected_pos_stage2 +
                                  config.num_expected_amb_stage2 +
                                  config.num_expected_neg_stage2, 1)) * i,
                         dtype=np.float32)
                for i in range(self.train_batch_size)
            ]

        roi_align_index_test = [np.array(np.ones((config.rpn_max_num, 1)) * i, dtype=np.float32) \
                                for i in range(self.test_batch_size)]

        self.roi_align_index_tensor = Tensor(np.concatenate(roi_align_index))
        self.roi_align_index_test_tensor = Tensor(
            np.concatenate(roi_align_index_test))

        self.roi_align4 = P.ROIAlign(pooled_width=7,
                                     pooled_height=7,
                                     spatial_scale=0.125)
        self.roi_align5 = P.ROIAlign(pooled_width=7,
                                     pooled_height=7,
                                     spatial_scale=0.0625)

        self.concat1 = P.Concat(axis=1)
        self.roi_align_fuse = _conv(in_channels=1024,
                                    out_channels=512,
                                    kernel_size=1,
                                    padding=0,
                                    stride=1)
        self.vgg16_feature_extractor = VGG16FeatureExtraction()
Esempio n. 23
0
 def __init__(self):
     super(NetOnesLike, self).__init__()
     self.ones_like = P.OnesLike()
Esempio n. 24
0
    def __init__(self, config):
        super(Mask_Rcnn_Resnet50, self).__init__()
        self.train_batch_size = config.batch_size
        self.num_classes = config.num_classes
        self.anchor_scales = config.anchor_scales
        self.anchor_ratios = config.anchor_ratios
        self.anchor_strides = config.anchor_strides
        self.target_means = tuple(config.rcnn_target_means)
        self.target_stds = tuple(config.rcnn_target_stds)

        # Anchor generator
        anchor_base_sizes = None
        self.anchor_base_sizes = list(
            self.anchor_strides) if anchor_base_sizes is None else anchor_base_sizes

        self.anchor_generators = []
        for anchor_base in self.anchor_base_sizes:
            self.anchor_generators.append(
                AnchorGenerator(anchor_base, self.anchor_scales, self.anchor_ratios))

        self.num_anchors = len(self.anchor_ratios) * len(self.anchor_scales)

        featmap_sizes = config.feature_shapes
        assert len(featmap_sizes) == len(self.anchor_generators)

        self.anchor_list = self.get_anchors(featmap_sizes)

        # Backbone resnet50
        self.backbone = ResNetFea(ResidualBlockUsing,
                                  config.resnet_block,
                                  config.resnet_in_channels,
                                  config.resnet_out_channels,
                                  False)

        # Fpn
        self.fpn_ncek = FeatPyramidNeck(config.fpn_in_channels,
                                        config.fpn_out_channels,
                                        config.fpn_num_outs)

        # Rpn and rpn loss
        self.gt_labels_stage1 = Tensor(np.ones((self.train_batch_size, config.num_gts)).astype(np.uint8))
        self.rpn_with_loss = RPN(config,
                                 self.train_batch_size,
                                 config.rpn_in_channels,
                                 config.rpn_feat_channels,
                                 config.num_anchors,
                                 config.rpn_cls_out_channels)

        # Proposal
        self.proposal_generator = Proposal(config,
                                           self.train_batch_size,
                                           config.activate_num_classes,
                                           config.use_sigmoid_cls)
        self.proposal_generator.set_train_local(config, True)
        self.proposal_generator_test = Proposal(config,
                                                config.test_batch_size,
                                                config.activate_num_classes,
                                                config.use_sigmoid_cls)
        self.proposal_generator_test.set_train_local(config, False)

        # Assign and sampler stage two
        self.bbox_assigner_sampler_for_rcnn = BboxAssignSampleForRcnn(config, self.train_batch_size,
                                                                      config.num_bboxes_stage2, True)
        self.decode = P.BoundingBoxDecode(max_shape=(768, 1280), means=self.target_means, \
                                          stds=self.target_stds)

        # Roi
        self.roi_align = SingleRoIExtractor(config,
                                            config.roi_layer,
                                            config.roi_align_out_channels,
                                            config.roi_align_featmap_strides,
                                            self.train_batch_size,
                                            config.roi_align_finest_scale,
                                            mask=False)
        self.roi_align.set_train_local(config, True)

        self.roi_align_mask = SingleRoIExtractor(config,
                                                 config.roi_layer,
                                                 config.roi_align_out_channels,
                                                 config.roi_align_featmap_strides,
                                                 self.train_batch_size,
                                                 config.roi_align_finest_scale,
                                                 mask=True)
        self.roi_align_mask.set_train_local(config, True)

        self.roi_align_test = SingleRoIExtractor(config,
                                                 config.roi_layer,
                                                 config.roi_align_out_channels,
                                                 config.roi_align_featmap_strides,
                                                 1,
                                                 config.roi_align_finest_scale,
                                                 mask=False)
        self.roi_align_test.set_train_local(config, False)

        self.roi_align_mask_test = SingleRoIExtractor(config,
                                                      config.roi_layer,
                                                      config.roi_align_out_channels,
                                                      config.roi_align_featmap_strides,
                                                      1,
                                                      config.roi_align_finest_scale,
                                                      mask=True)
        self.roi_align_mask_test.set_train_local(config, False)

        # Rcnn
        self.rcnn_cls = RcnnCls(config, self.train_batch_size, self.num_classes)
        self.rcnn_mask = RcnnMask(config, self.train_batch_size, self.num_classes)

        # Op declare
        self.squeeze = P.Squeeze()
        self.cast = P.Cast()

        self.concat = P.Concat(axis=0)
        self.concat_1 = P.Concat(axis=1)
        self.concat_2 = P.Concat(axis=2)
        self.reshape = P.Reshape()
        self.select = P.Select()
        self.greater = P.Greater()
        self.transpose = P.Transpose()

        # Test mode
        self.test_batch_size = config.test_batch_size
        self.split = P.Split(axis=0, output_num=self.test_batch_size)
        self.split_shape = P.Split(axis=0, output_num=4)
        self.split_scores = P.Split(axis=1, output_num=self.num_classes)
        self.split_fb_mask = P.Split(axis=1, output_num=self.num_classes)
        self.split_cls = P.Split(axis=0, output_num=self.num_classes-1)
        self.tile = P.Tile()
        self.gather = P.GatherNd()

        self.rpn_max_num = config.rpn_max_num

        self.zeros_for_nms = Tensor(np.zeros((self.rpn_max_num, 3)).astype(np.float16))
        self.ones_mask = np.ones((self.rpn_max_num, 1)).astype(np.bool)
        self.zeros_mask = np.zeros((self.rpn_max_num, 1)).astype(np.bool)
        self.bbox_mask = Tensor(np.concatenate((self.ones_mask, self.zeros_mask,
                                                self.ones_mask, self.zeros_mask), axis=1))
        self.nms_pad_mask = Tensor(np.concatenate((self.ones_mask, self.ones_mask,
                                                   self.ones_mask, self.ones_mask, self.zeros_mask), axis=1))

        self.test_score_thresh = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * config.test_score_thr)
        self.test_score_zeros = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * 0)
        self.test_box_zeros = Tensor(np.ones((self.rpn_max_num, 4)).astype(np.float16) * -1)
        self.test_iou_thr = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * config.test_iou_thr)
        self.test_max_per_img = config.test_max_per_img
        self.nms_test = P.NMSWithMask(config.test_iou_thr)
        self.softmax = P.Softmax(axis=1)
        self.logicand = P.LogicalAnd()
        self.oneslike = P.OnesLike()
        self.test_topk = P.TopK(sorted=True)
        self.test_num_proposal = self.test_batch_size * self.rpn_max_num

        # Improve speed
        self.concat_start = min(self.num_classes - 2, 55)
        self.concat_end = (self.num_classes - 1)

        # Init tensor
        roi_align_index = [np.array(np.ones((config.num_expected_pos_stage2 + config.num_expected_neg_stage2, 1)) * i,
                                    dtype=np.float16) for i in range(self.train_batch_size)]

        roi_align_index_test = [np.array(np.ones((config.rpn_max_num, 1)) * i, dtype=np.float16) \
                                for i in range(self.test_batch_size)]

        self.roi_align_index_tensor = Tensor(np.concatenate(roi_align_index))
        self.roi_align_index_test_tensor = Tensor(np.concatenate(roi_align_index_test))

        roi_align_index_pos = [np.array(np.ones((config.num_expected_pos_stage2, 1)) * i,
                                        dtype=np.float16) for i in range(self.train_batch_size)]
        self.roi_align_index_tensor_pos = Tensor(np.concatenate(roi_align_index_pos))

        self.rcnn_loss_cls_weight = Tensor(np.array(config.rcnn_loss_cls_weight).astype(np.float16))
        self.rcnn_loss_reg_weight = Tensor(np.array(config.rcnn_loss_reg_weight).astype(np.float16))
        self.rcnn_loss_mask_fb_weight = Tensor(np.array(config.rcnn_loss_mask_fb_weight).astype(np.float16))

        self.argmax_with_value = P.ArgMaxWithValue(axis=1)
        self.on_value = Tensor(1.0, mstype.float32)
        self.off_value = Tensor(0.0, mstype.float32)
        self.onehot = P.OneHot()
        self.reducesum = P.ReduceSum()
        self.sigmoid = P.Sigmoid()
        self.expand_dims = P.ExpandDims()
        self.test_mask_fb_zeros = Tensor(np.zeros((self.rpn_max_num, 28, 28)).astype(np.float16))
        self.value = Tensor(1.0, mstype.float16)