Esempio n. 1
0
    def _partial_product(i, a, b):
        r"""
        Parameters
        ----------
        i : {int, None}
        a : (..., n, ...) ndarray
        b : (..., m, ...) ndarray

        Returns
        -------
        mat : (n, m) ndarray
            Or return a float if i is None.
        """
        if i is None:
            a = np.reshape(a, -1)
            b = np.reshape(b, -1)
        else:
            n = a.shape[i]
            m = b.shape[i]
            a = np.moveaxis(a, i, 0)
            a = np.reshape(a, (n, -1))
            b = np.moveaxis(b, i, -1)
            b = np.reshape(b, (-1, m))
        mat = np.dot(a, b)
        return mat
Esempio n. 2
0
    def partial_trace(array1, i, array2, j):
        r"""Partial trace of 2 tensors, return a matrix. 

                +----+
                |    |
            -i- 1 -- 2 -j-

        Parameters
        ----------
        array1 : ndarray
        i : {int, None}
            if i is None then j must be None.
        array2 : ndarray 
        j : {int, None}
            if j is None then i must be None.

        Returns
        -------
        ans : ndarray
            Of shape `(n, m)`
        """
        if i is not None and j is not None:
            shape_1, shape_2 = map(list, (array1.shape, array2.shape))
            n, m = shape_1[i], shape_2[j]
            array1 = np.moveaxis(array1, i, 0)
            array1 = np.reshape(array1, (n, -1))
            array2 = np.moveaxis(array2, j, -1)
            array2 = np.reshape(array2, (-1, m))
        elif i is None and j is None:
            array1 = np.reshape(array1, -1)
            array2 = np.reshape(array2, -1)
        else:
            raise TypeError('Invalid parameters i={} and j={}!'.format(i, j))
        ans = np.dot(array1, array2)
        return ans
Esempio n. 3
0
    def __partial_product(array1, i, array2, j):
        r"""Times a matrix to a tensor.

               |
            -- 1 -i--j- 2 --
               |

        Parameters
        ----------
        array1 : ndarray
        i : int
        array2 : 2-d ndarray 
        j : int

        Returns
        -------
        ans : ndarray
        """
        shape_1, shape_2 = map(list, (array1.shape, array2.shape))
        n, m = shape_1.pop(i), shape_2.pop(j)
        new_shape = shape_1[:i] + shape_2 + shape_1[i:]
        array1 = np.moveaxis(array1, i, -1)
        array1 = np.reshape(array1, (-1, n))
        array2 = np.moveaxis(array2, j, 0)
        array2 = np.reshape(array2, (m, -1))
        ans = np.dot(array1, array2)
        ans = np.reshape(ans, shape_1 + [-1])
        ans = np.moveaxis(ans, -1, i)
        ans = np.reshape(ans, new_shape)
        return ans
Esempio n. 4
0
 def normalize(self, forced=False):
     """Normalize the array of self. Only work when self.normalized.
     Set `forced` to `True` to normalize any way.
     """
     array = self.array
     if array is None or (not self.normalized and not forced):
         return
     axis = self.axis
     if axis is None:
         norm = np.array(self.local_norm())
         self.set_array(array / norm)
         ans = norm
     else:
         norm = linalg.norm
         shape = self.shape
         dim = shape.pop(axis)
         array = np.reshape(np.moveaxis(array, axis, 0), (dim, -1))
         vecs = []
         norm_list = []
         for vec_i in array:
             for vec_j in vecs:
                 vec_i -= vec_j * np.dot(np.conj(vec_j), vec_i)
             norm_ = norm(vec_i)
             vecs.append(vec_i / norm_)
             norm_list.append(norm_)
         array = np.array(vecs)
         array = np.moveaxis(np.reshape(array, [-1] + shape), 0, axis)
         self.set_array(array)
         ans = norm_list
     return ans
Esempio n. 5
0
def autocomplete(root, n_bond_dict):
    """Autocomplete the tensors linked to `self.root` with suitable initial
    value.

    Parameters
    ----------
    root : Tensor
    n_bond_dict : {Leaf: int}
        A dictionary to specify the dimensions of each primary basis.
    """
    for t in root.visitor(leaf=False):
        if t.array is None:
            axis = t.axis
            n_children = []
            for i, child, j in t.children():
                n_children.append(n_bond_dict[(t, i, child, j)])
            if axis is not None:
                p, p_i = t[axis]
                n_parent = n_bond_dict[(p, p_i, t, axis)]
                shape = [n_parent] + n_children
            else:
                n_parent = 1
                shape = n_children
            array = np.zeros((n_parent, np.prod(n_children)))
            for n, v_i in zip(triangular(n_children), array):
                v_i[n] = 1.
            array = np.reshape(array, shape)
            if axis is not None:
                array = np.moveaxis(array, 0, axis)
            t.set_array(array)
            t.normalize(forced=True)
            assert (
                t.axis is None or
                np.linalg.matrix_rank(t.local_norm()) == t.shape[t.axis]
            )
    if __debug__:
        for t in root.visitor():
            t.check_completness(strict=True)
    return
Esempio n. 6
0
    def projector(self, comp=False):
        """[Deprecated] Return the projector corresponding to self.

        Returns
        -------
        ans : ndarray
        """
        axis = self.axis
        if axis is not None:
            array = self.array
            shape = self.shape
            dim = shape.pop(self.axis)
            comp_dim = np.prod(shape)
            array = np.moveaxis(array, axis, -1)
            array = np.reshape(array, (-1, dim))
            array_h = np.conj(np.transpose(array))
            ans = np.dot(array, array_h)
            if comp:
                identity = np.identity(comp_dim)
                ans = identity - ans
            ans = np.reshape(ans, shape * 2)
            return ans
        else:
            raise RuntimeError('Need to specific the normalization axis!')
Esempio n. 7
0
    def autocomplete(self, n_bond_dict, max_entangled=False):
        """Autocomplete the tensors linked to `self.root` with suitable initial
        value.

        Parameters
        ----------
        n_bond_dict : {Leaf: int}
            A dictionary to specify the dimensions of each primary basis.
        max_entangled : bool
            Whether to use the max entangled state as initial value (for finite
            temperature and imaginary-time propagation).  Default is `False`.
        """
        for t in self.root.visitor(leaf=False):
            if t.array is None:
                axis = t.axis
                if max_entangled and not any(t.children(leaf=False)):
                    if len(list(t.children(leaf=True))) != 2 or axis is None:
                        raise RuntimeError('Not correct tensor graph for FT.')
                    for i, leaf, j in t.children():
                        if not leaf.name.endswith("'"):
                            n_leaf = n_bond_dict[(t, i, leaf, j)]
                            break
                    p, p_i = t[axis]
                    n_parent = n_bond_dict[(p, p_i, t, axis)]
                    vec_i = np.diag(np.ones((n_leaf, )) / np.sqrt(n_leaf))
                    vec_i = np.reshape(vec_i, -1)
                    init_vecs = [vec_i]
                    print(np.shape(init_vecs),
                          np.shape(self._local_matvec(leaf)))
                    da = DavidsonAlgorithm(self._local_matvec(leaf),
                                           init_vecs=init_vecs,
                                           n_vals=n_parent)
                    array = da.kernel(search_mode=True)
                    if len(array) >= n_parent:
                        array = array[:n_parent]
                    else:
                        for j in range(n_parent - len(array)):
                            v = np.zeros((n_leaf**2, ))
                            v[j] = 1.0
                            array.append(v)
                    assert len(array) == n_parent
                    assert np.allclose(array[0], vec_i)
                    array = np.reshape(array, (n_parent, n_leaf, n_leaf))
                else:
                    n_children = []
                    for i, child, j in t.children():
                        n_children.append(n_bond_dict[(t, i, child, j)])
                    if axis is not None:
                        p, p_i = t[axis]
                        n_parent = n_bond_dict[(p, p_i, t, axis)]
                        shape = [n_parent] + n_children
                    else:
                        n_parent = 1
                        shape = n_children
                    array = np.zeros((n_parent, np.prod(n_children)))
                    for n, v_i in zip(self.triangular(n_children), array):
                        v_i[n] = 1.
                    array = np.reshape(array, shape)
                    if axis is not None:
                        array = np.moveaxis(array, 0, axis)
                t.set_array(array)
                t.normalize(forced=True)
                assert (t.axis is None or np.linalg.matrix_rank(t.local_norm())
                        == t.shape[t.axis])
        if __debug__:
            for t in self.root.visitor():
                t.check_completness(strict=True)
        return
Esempio n. 8
0
 def _partial_product(array1, i, array2, j):
     l1, l2 = array1.ndim, array2.ndim
     ans = np.tensordot(array1, array2, axes=([i], [j]))
     ans = np.moveaxis(ans, list(range(l1 - 1, l1 + l2 - 2)), list(range(i, i + l2 - 1)))
     return ans
Esempio n. 9
0
    def split(self, axis, indice=None, root=None, child=None, rank=None, err=None, normalized=False):
        """Split the root Tensor to a certain axis/certain axes.

        Parameters
        ----------
        axis : {int, [int]}
        rank : int
            Max rank in SVD
        err : float
            Max error in SVD
        indice : (int, int)
            Linkage between root and child
        root : Tensor
            Tensor to be a new root node. `None` to create a new Tensor.
        child : Tensor
            Tensor to be a new child node. `None` to create a new Tensor.

        Returns
        -------
        root : Tensor
            New root node in the same environment of self.
        child : Tensor
            New child node in the same environment of self.

        Notes
        -----
        When split a Tensor, this method should let root.unite(i) (i.e. unite
        with child) be a inversion in terms of the tensor network.
        """
        if self.axis is not None:
            raise RuntimeError('Can only split the root Tensor!')
        try:
            axes1 = list(sorted(axis))
        except TypeError:
            axes1 = [axis]
            default_indice = (0, axis)
        else:
            default_indice = (0, 0)
        axes2 = [i for i in range(self.order) if i not in axes1]
        index1, index2 = indice if indice is not None else default_indice

        # save all data needed in `self`
        a = self.array
        children = list(self.children(axis=None))
        name = self.name
        shape = self.shape
        shape1, shape2 = [shape[i] for i in axes1], [shape[i] for i in axes2]
        # name settings only for clarity..
        if '+' in name:
            name1, name2 = name.split('+')
        else:
            name1, name2 = name + '\'', name

        # Calculate arrays for new tensors
        for n, i in enumerate(axes1):
            a = np.moveaxis(a, i, n)
        a = np.reshape(a, (np.prod([1] + shape1), np.prod([1] + shape2)))
        u, s, vh = compressed_svd(a, rank=rank, err=err)
        root_array = np.reshape(np.dot(u, s), shape1 + [-1])
        root_array = np.moveaxis(root_array, -1, index1)
        child_array = np.reshape(vh, [-1] + shape2)
        child_array = np.moveaxis(child_array, 0, index2)
        # Create/write new tensors.
        cls = type(self)
        if root is None:
            root = cls(name=name1, array=root_array, axis=None, normalized=normalized)
        else:
            root.axis = None
            root.set_array(root_array)
        if child is None:
            child = cls(name=name2, array=child_array, axis=index2, normalized=normalized)
        else:
            child.axis = index2
            child.set_array(child_array)

        # Fix linkage info
        axes1.insert(index1, None)
        axes2.insert(index2, None)
        unlink = self.unlink
        link = self.link
        link_info = [(root, index1, child, index2)]
        for i, t, j in children:
            is_1 = i in axes1
            axes = axes1 if is_1 else axes2
            tensor = root if is_1 else child
            unlink(self, i, t, j)
            link_info.append((tensor, axes.index(i), t, j))
        for linkage in link_info:
            link(*linkage)
        return root, child