Esempio n. 1
0
def predict_fused_rn_seq(fusion_weights_path,
                         dataset_name,
                         dataset_fold,
                         config_filepaths,
                         freeze_g_theta=False,
                         fuse_at_fc1=False,
                         flat_seqs=False,
                         batch_size=32,
                         verbose=2,
                         gpus=1,
                         return_acc=False,
                         use_data_gen=True):

    if verbose > 0:
        print("***** Predicting parameters *****")
        print("\t fusion_weights_path:", fusion_weights_path)
        print("\t Dataset:", dataset_name)
        print("\t Dataset fold:", dataset_fold)
        print("\t Fusion info")
        print("\t > config_filepaths:", config_filepaths)
        print("\t > freeze_g_theta:", freeze_g_theta)
        print("\t > fuse_at_fc1:", fuse_at_fc1)
        print("\t Predicting options")
        print("\t > Batch Size:", batch_size)
        print("\t > flat_seqs:", flat_seqs)
        print("\t > Use Data Generator:", use_data_gen)

    ####
    if dataset_name == 'UT':
        dataset = UT
    elif dataset_name == 'SBU':
        dataset = SBU
    elif dataset_name == 'NTU':
        dataset = NTU
    elif dataset_name == 'YMJA':
        dataset = YMJA

    data_kwargs, _, _ = read_config(config_filepaths[0])

    data_kwargs['sample_method'] = 'all'
    data_kwargs['seq_step'] = data_kwargs.get('seq_step',
                                              data_kwargs['timesteps'] // 2)

    if verbose > 0:
        print("Reading data...")

    if use_data_gen:
        if verbose > 0:
            print("> Using DataGenerator")
        val_generator = DataGenerator(dataset_name,
                                      dataset_fold,
                                      'validation',
                                      batch_size=batch_size,
                                      reshuffle=False,
                                      shuffle_indiv_order=False,
                                      **data_kwargs)
        X_val, Y_val = val_generator[0]
        num_joints = len(X_val) // 2
        object_shape = (len(X_val[0][0]), )

        if verbose > 0:
            print("> Reading Y_val...")
        Y_val_flat = []
        for batch_idx in range(len(val_generator)):
            _, y_val = val_generator[batch_idx]
            Y_val_flat += y_val.tolist()

        videos_address = []
        prvs_video_idx = val_generator.seqs_mapping[0][0]
        pointer, num_seqs = 0, 0
        for video_idx, seq_idx in val_generator.seqs_mapping:
            if prvs_video_idx == video_idx:
                num_seqs += 1
            else:
                videos_address.append(slice(pointer, pointer + num_seqs))
                pointer += num_seqs
                num_seqs = 1
                prvs_video_idx = video_idx
        videos_address.append(slice(pointer, pointer + num_seqs))

        Y_val = []
        for video_address in videos_address:
            Y_val.append(Y_val_flat[video_address][0])
    else:
        if verbose > 0:
            print("> Reading all data at once")

        X_val, Y_val = dataset.get_val(dataset_fold, **data_kwargs)

        if flat_seqs:  # Accuracy in this case will be per sequence and not per video
            num_joints = len(X_val) // 2
            object_shape = (len(X_val[0][0]), )
        else:  # Accuracy in this case will be per video, after averaging the seqs
            num_joints = len(X_val[0][0]) // 2
            object_shape = (len(X_val[0][0][0]), )
            ## Flatten X_val at axis = 1 (num_seqs), and swap axis (1,0,2)
            ## Num_videos replaced by -> SUM num_seqs
            ## Keep "address" of each input, so unflatten from Y_pred can take place
            reshaped_X_val = [
            ]  # reshaped X_val dropping axis which represents the video seqs
            videos_address = []  # video address in reshaped_X_val
            pointer = 0
            for video_seqs in X_val:
                num_seqs = len(video_seqs)
                videos_address.append(slice(pointer, pointer + num_seqs))
                pointer += num_seqs
                reshaped_X_val += video_seqs
            X_val = np.array(reshaped_X_val).transpose((1, 0, 2)).tolist()

    output_size = len(Y_val[0])

    if verbose > 0:
        print("Creating model...")

    models_kwargs = []
    for config_filepath in config_filepaths:
        data_kwargs, model_kwargs, train_kwargs = read_config(config_filepath)
        timesteps = data_kwargs['timesteps']
        add_joint_idx = data_kwargs['add_joint_idx']
        add_body_part = data_kwargs['add_body_part']
        overhead = add_joint_idx + add_body_part  # True/False = 1/0
        num_dim = (object_shape[0] - overhead) // timesteps
        model_kwargs['num_dim'] = num_dim
        model_kwargs['overhead'] = overhead
        models_kwargs.append(model_kwargs)

    train_kwargs['drop_rate'] = 0
    weights_filepaths = [[] for _ in config_filepaths]

    model = fuse_rn(num_joints,
                    object_shape,
                    output_size,
                    train_kwargs,
                    models_kwargs,
                    weights_filepaths,
                    freeze_g_theta=freeze_g_theta,
                    fuse_at_fc1=fuse_at_fc1)

    if verbose > 0:
        print("Loading weights...")
    model.load_weights(fusion_weights_path)

    if verbose > 0:
        print("Starting predicting...")

    if use_data_gen:
        reshaped_Y_pred = model.predict_generator(val_generator,
                                                  max_queue_size=10,
                                                  workers=5,
                                                  use_multiprocessing=True,
                                                  verbose=verbose)
    else:
        reshaped_Y_pred = model.predict(X_val,
                                        batch_size=batch_size,
                                        verbose=verbose)

    use_gauss_weight = True
    if not flat_seqs:  # Undo and avg reshaped_Y_pred (SUM num_seqs, ...) -> (Num_videos, ...)
        Y_pred = []
        for video_address in videos_address:
            if use_gauss_weight:
                avg_scores = np.average(
                    reshaped_Y_pred[video_address],
                    axis=0,
                    weights=gauss(len(reshaped_Y_pred[video_address])))
            else:
                avg_scores = np.average(reshaped_Y_pred[video_address], axis=0)
            Y_pred.append(avg_scores.tolist())

    acc_tensor = categorical_accuracy(Y_val, Y_pred)
    acc = K.eval(acc_tensor).mean()

    if verbose > 0:
        print("Validation acc: {:.2%}".format(acc))

    # Convert back from to_categorical
    Y_pred = np.argmax(Y_pred, axis=1, out=None).tolist()
    Y_val = np.argmax(Y_val, axis=1, out=None).tolist()

    if return_acc:
        return acc
    else:
        return Y_pred, Y_val
Esempio n. 2
0
def train_fused_rn(output_path,
                   dataset_name,
                   dataset_fold,
                   config_filepaths,
                   weights_filepaths,
                   batch_size=32,
                   epochs=100,
                   checkpoint_period=5,
                   learning_rate=1e-4,
                   drop_rate=0.1,
                   freeze_g_theta=False,
                   fuse_at_fc1=False,
                   initial_epoch=0,
                   initial_weights=None,
                   use_data_gen=True,
                   subsample_ratio=None,
                   gpus=1,
                   verbose=2):

    data_kwargs, _, _ = read_config(config_filepaths[0])

    if verbose > 0:
        print("***** Training parameters *****")
        print("\t Output path:", output_path)
        print("\t Dataset:", dataset_name)
        print("\t Dataset fold:", dataset_fold)
        print("\t Fusion info")
        print("\t > config_filepaths:", config_filepaths)
        print("\t > weights_filepaths:", weights_filepaths)
        print("\t > freeze_g_theta:", freeze_g_theta)
        print("\t > fuse_at_fc1:", fuse_at_fc1)
        print("\t Training options")
        print("\t > Batch Size:", batch_size)
        print("\t > Epochs:", epochs)
        print("\t > Checkpoint Period:", checkpoint_period)
        print("\t > Learning Rate:", learning_rate)
        print("\t > Dropout rate:", drop_rate)
        print("\t > Training Subsample Ratio:", subsample_ratio)
        print("\t GPUs:", gpus)
        print("\t Skeleton info")
        for key, value in data_kwargs.items():
            print("\t > {}: {}".format(key, value))

    if dataset_name == 'UT':
        dataset = UT
    elif dataset_name == 'SBU':
        dataset = SBU

    if verbose > 0:
        print("Reading data...")

    if use_data_gen:
        train_generator = DataGenerator(dataset_name,
                                        dataset_fold,
                                        'train',
                                        batch_size=batch_size,
                                        reshuffle=True,
                                        shuffle_indiv_order=True,
                                        **data_kwargs)
        val_generator = DataGenerator(dataset_name,
                                      dataset_fold,
                                      'validation',
                                      batch_size=batch_size,
                                      reshuffle=False,
                                      shuffle_indiv_order=False,
                                      **data_kwargs)
        X_train, Y_train = train_generator[0]
        X_val, Y_val = val_generator[0]
        train_data = train_generator
        val_data = val_generator
    else:
        X_train, Y_train = dataset.get_train(dataset_fold, **data_kwargs)
        X_val, Y_val = dataset.get_val(dataset_fold, **data_kwargs)
        train_data = [X_train, Y_train]
        val_data = [X_val, Y_val]

    num_joints = len(X_train) // 2
    object_shape = (len(X_train[0][0]), )
    output_size = len(Y_train[0])

    models_kwargs = []
    for config_filepath in config_filepaths:
        data_kwargs, model_kwargs, train_kwargs = read_config(config_filepath)
        timesteps = data_kwargs['timesteps']
        add_joint_idx = data_kwargs['add_joint_idx']
        add_body_part = data_kwargs['add_body_part']
        overhead = add_joint_idx + add_body_part  # True/False = 1/0
        num_dim = (object_shape[0] - overhead) // timesteps
        model_kwargs['num_dim'] = num_dim
        model_kwargs['overhead'] = overhead
        models_kwargs.append(model_kwargs)

    train_kwargs['drop_rate'] = drop_rate
    if verbose > 0:
        print("Creating model...")
    model = fuse_rn(num_joints,
                    object_shape,
                    output_size,
                    train_kwargs,
                    models_kwargs,
                    weights_filepaths,
                    freeze_g_theta=freeze_g_theta,
                    fuse_at_fc1=fuse_at_fc1)

    if initial_weights is not None:
        model.load_weights(initial_weights)

    fit_history = train_model(model=model,
                              verbose=verbose,
                              learning_rate=learning_rate,
                              output_path=output_path,
                              checkpoint_period=checkpoint_period,
                              batch_size=batch_size,
                              epochs=epochs,
                              use_data_gen=use_data_gen,
                              train_data=train_data,
                              val_data=val_data,
                              subsample_ratio=subsample_ratio)

    return fit_history
Esempio n. 3
0
def predict_fused_rn(fusion_weights_path,
                     dataset_name,
                     dataset_fold,
                     config_filepaths,
                     freeze_g_theta=False,
                     fuse_at_fc1=False,
                     batch_size=32,
                     verbose=2,
                     gpus=1):

    if verbose > 0:
        print("***** Predicting parameters *****")
        print("\t fusion_weights_path:", fusion_weights_path)
        print("\t Dataset:", dataset_name)
        print("\t Dataset fold:", dataset_fold)
        print("\t Fusion info")
        print("\t > config_filepaths:", config_filepaths)
        print("\t > freeze_g_theta:", freeze_g_theta)
        print("\t > fuse_at_fc1:", fuse_at_fc1)
        print("\t Predicting options")
        print("\t > Batch Size:", batch_size)

    data_kwargs, _, _ = read_config(config_filepaths[0])

    val_generator = DataGenerator(dataset_name,
                                  dataset_fold,
                                  'validation',
                                  batch_size=batch_size,
                                  reshuffle=False,
                                  shuffle_indiv_order=False,
                                  **data_kwargs)
    X_val, Y_val = val_generator[0]

    num_joints = len(X_val) // 2
    object_shape = (len(X_val[0][0]), )
    output_size = len(Y_val[0])

    if verbose > 0:
        print("Reading Y_val...")
    Y_val = []
    for batch_idx in range(len(val_generator)):
        _, y_val = val_generator[batch_idx]
        Y_val += y_val.tolist()

    models_kwargs = []
    for config_filepath in config_filepaths:
        data_kwargs, model_kwargs, train_kwargs = read_config(config_filepath)
        timesteps = data_kwargs['timesteps']
        add_joint_idx = data_kwargs['add_joint_idx']
        add_body_part = data_kwargs['add_body_part']
        overhead = add_joint_idx + add_body_part  # True/False = 1/0
        num_dim = (object_shape[0] - overhead) // timesteps
        model_kwargs['num_dim'] = num_dim
        model_kwargs['overhead'] = overhead
        models_kwargs.append(model_kwargs)

    train_kwargs['drop_rate'] = 0
    weights_filepaths = [[] for _ in config_filepaths]

    if verbose > 0:
        print("Creating model...")
    model = fuse_rn(num_joints,
                    object_shape,
                    output_size,
                    train_kwargs,
                    models_kwargs,
                    weights_filepaths,
                    freeze_g_theta=freeze_g_theta,
                    fuse_at_fc1=fuse_at_fc1)

    if verbose > 0:
        print("Loading weights...")
    model.load_weights(fusion_weights_path)

    if verbose > 0:
        print("Starting predicting...")

    Y_pred = model.predict_generator(val_generator,
                                     max_queue_size=10,
                                     workers=5,
                                     use_multiprocessing=True,
                                     verbose=verbose)

    acc_tensor = categorical_accuracy(Y_val, Y_pred)
    acc = K.eval(acc_tensor).mean()

    if verbose > 0:
        print("Validation acc: {:.2%}".format(acc))

    # Convert back from to_categorical
    Y_pred = np.argmax(Y_pred, axis=1, out=None).tolist()
    Y_val = np.argmax(Y_val, axis=1, out=None).tolist()

    return Y_pred, Y_val
Esempio n. 4
0
def train_fused_rn(output_path,
                   dataset_name,
                   dataset_fold,
                   config_filepaths,
                   weights_filepaths,
                   batch_size=32,
                   epochs=100,
                   checkpoint_period=5,
                   learning_rate=1e-4,
                   drop_rate=0.1,
                   freeze_g_theta=False,
                   fuse_at_fc1=False,
                   new_arch=False,
                   avg_at_end=False,
                   initial_epoch=0,
                   initial_weights=None,
                   use_data_gen=True,
                   subsample_ratio=None,
                   gpus=1,
                   verbose=2):

    data_kwargs, _, _ = read_config(config_filepaths[0])
    if new_arch:
        data_kwargs['arch'] = 'joint_temp_fused'

    if verbose > 0:
        print("***** Training parameters *****")
        print("\t Output path:", output_path)
        print("\t Dataset:", dataset_name)
        print("\t Dataset fold:", dataset_fold)
        print("\t Fusion info")
        print("\t > config_filepaths:", config_filepaths)
        print("\t > weights_filepaths:", weights_filepaths)
        print("\t > freeze_g_theta:", freeze_g_theta)
        print("\t > fuse_at_fc1:", fuse_at_fc1)
        print("\t > New architecture:", new_arch)
        print("\t Training options")
        print("\t > Batch Size:", batch_size)
        print("\t > Epochs:", epochs)
        print("\t > Checkpoint Period:", checkpoint_period)
        print("\t > Learning Rate:", learning_rate)
        print("\t > Dropout rate:", drop_rate)
        print("\t > Training Subsample Ratio:", subsample_ratio)
        print("\t GPUs:", gpus)
        print("\t Skeleton info")
        for key, value in data_kwargs.items():
            print("\t > {}: {}".format(key, value))

    if dataset_name == 'UT':
        dataset = UT
    elif dataset_name == 'SBU':
        dataset = SBU
    elif dataset_name == 'YMJA':
        dataset = YMJA

    if verbose > 0:
        print("Reading data...")

    if use_data_gen:
        train_generator = DataGenerator(dataset_name,
                                        dataset_fold,
                                        'train',
                                        batch_size=batch_size,
                                        reshuffle=True,
                                        shuffle_indiv_order=True,
                                        **data_kwargs)
        val_generator = DataGenerator(dataset_name,
                                      dataset_fold,
                                      'validation',
                                      batch_size=batch_size,
                                      reshuffle=False,
                                      shuffle_indiv_order=False,
                                      **data_kwargs)

        X_train, Y_train = train_generator.getSampleData(0, new_arch)
        X_val, Y_val = val_generator.getSampleData(0, new_arch)
        train_data = train_generator
        val_data = val_generator
    else:
        X_train, Y_train = dataset.get_train(dataset_fold, **data_kwargs)
        X_val, Y_val = dataset.get_val(dataset_fold, **data_kwargs)
        train_data = [X_train, Y_train]
        val_data = [X_val, Y_val]

    models_kwargs = []
    output_size = len(Y_train[0])

    if new_arch:
        check_configs = []
        for config_filepath in config_filepaths:
            data_kwargs, model_kwargs, train_kwargs = read_config(
                config_filepath)
            check_configs.append(model_kwargs)

        # Ensure that temporal stream and joint stream both included. Reorder if necessary so that joint stream first.
        if (len(check_configs) != 2):
            print("Error: Expecting Joint Stream and Temporal Stream")
            exit(0)

        # Should reorder both weights and config.
        if (check_configs[0]['rel_type'] == 'temp_stream'):
            config_filepaths.reverse()
            weights_filepaths.reverse()

        check_configs = []
        for config_filepath in config_filepaths:
            data_kwargs, model_kwargs, train_kwargs = read_config(
                config_filepath)
            check_configs.append(model_kwargs)

        # Ensure that both joint and temporal stream exist
        if (check_configs[0]['rel_type'] != 'joint_stream'
                or check_configs[1]['rel_type'] != 'temp_stream'):
            print("Error: Expecting Joint Stream and Temporal Stream")
            exit(0)

        # Ensure X_train has two components
        if (len(X_train) != 2):
            print(
                "Error: Expecting X_train to consist of both joint and temporal components"
            )
            exit(0)

        for config_filepath, X_train_comp in zip(config_filepaths, X_train):
            num_joints = len(X_train_comp)
            object_shape = (len(X_train_comp[0][0]), )
            output_size = len(Y_train[0])

            data_kwargs, model_kwargs, train_kwargs = read_config(
                config_filepath)
            timesteps = data_kwargs['timesteps']
            add_joint_idx = data_kwargs['add_joint_idx']
            add_body_part = data_kwargs['add_body_part']
            overhead = add_joint_idx + add_body_part  # True/False = 1/0
            num_dim = (object_shape[0] - overhead) // timesteps
            model_kwargs['num_dim'] = num_dim
            model_kwargs['overhead'] = overhead
            model_kwargs['num_objs'] = num_joints
            model_kwargs['object_shape'] = object_shape

            models_kwargs.append(model_kwargs)

    else:
        num_joints = len(X_train) // 2
        object_shape = (len(X_train[0][0]), )

        for config_filepath in config_filepaths:
            data_kwargs, model_kwargs, train_kwargs = read_config(
                config_filepath)
            timesteps = data_kwargs['timesteps']
            add_joint_idx = data_kwargs['add_joint_idx']
            add_body_part = data_kwargs['add_body_part']
            overhead = add_joint_idx + add_body_part  # True/False = 1/0
            num_dim = (object_shape[0] - overhead) // timesteps
            model_kwargs['num_dim'] = num_dim
            model_kwargs['overhead'] = overhead
            model_kwargs['num_objs'] = num_joints
            model_kwargs['object_shape'] = object_shape
            models_kwargs.append(model_kwargs)

    for mod_kwargs in models_kwargs:
        mod_kwargs[
            'return_attention'] = False  # Don't return attention for fused mdels

    train_kwargs['drop_rate'] = drop_rate

    if verbose > 0:
        print("Creating model...")
    model = fuse_rn(output_size,
                    new_arch,
                    train_kwargs,
                    models_kwargs,
                    weights_filepaths,
                    freeze_g_theta=freeze_g_theta,
                    fuse_at_fc1=fuse_at_fc1,
                    avg_at_end=avg_at_end)

    if initial_weights is not None:
        model.load_weights(initial_weights)

    data_len = None

    fit_history = train_model(model=model,
                              verbose=verbose,
                              learning_rate=learning_rate,
                              output_path=output_path,
                              checkpoint_period=checkpoint_period,
                              batch_size=batch_size,
                              epochs=epochs,
                              use_data_gen=use_data_gen,
                              train_data=train_data,
                              val_data=val_data,
                              subsample_ratio=subsample_ratio,
                              data_len=data_len)

    return fit_history
Esempio n. 5
0
    "--normalize",
    action="store_true",
    help="Normalize the embedding before averaging and output.")
parser.add_argument("--config", type=str, help="The configuration file.")
parser.add_argument("model_dir", type=str, help="The model directory.")
parser.add_argument("rspecifier",
                    type=str,
                    help="Kaldi feature rspecifier (or ark file).")
parser.add_argument("wspecifier",
                    type=str,
                    help="Kaldi output wspecifier (or ark file).")

if __name__ == "__main__":

    args = parser.parse_args()
    params = read_config(args.config)
    os.environ['CUDA_VISIBLE_DEVICES'] = '1'
    nnet_dir = os.path.join(args.model_dir, "nnet")

    with open(os.path.join(nnet_dir, "num_speakers"), 'r') as f:
        num_speakers = f.readline().strip()

    trainer = Trainer(params=params,
                      model_dir=args.model_dir,
                      num_speakers=int(num_speakers))
    load_model_dir = os.path.join(args.model_dir, "checkpoint")
    trainer.load(model=trainer.network,
                 model_name=os.path.join(load_model_dir, "net.pth"))
    trainer.network.eval()

    if args.rspecifier.rsplit(".", 1)[1] == "scp":
Esempio n. 6
0
def run_protocol(experiment_name,
                 config_filepath,
                 dataset_name,
                 num_reruns=2,
                 folds=None,
                 verbose=0,
                 batch_size=64,
                 seqs_eval=False,
                 fusion_mode=None,
                 temp_rn=False):
    if fusion_mode is None:
        data_kwargs, model_kwargs, train_kwargs = read_config(config_filepath)
    else:
        fusion_kwargs, train_kwargs = read_config(config_filepath, fusion=True)
        weights_base_paths = [
            '/'.join(weights_filepath.split('/')[:-3])
            for weights_filepath in fusion_kwargs['weights_filepaths']
        ]
        fusion_kwargs.pop('weights_filepaths', None)
        criteria = fusion_kwargs.pop(
            'criteria', 'val_loss' if fusion_mode == 'middle' else 'val_acc')
        data_kwargs, model_kwargs, _ = read_config(
            fusion_kwargs['config_filepaths'][0])

    if dataset_name == 'UT-1':
        dataset_folds = UT.get_folds(setid=1)
        dataset_codename = 'UT'
    elif dataset_name == 'UT-2':
        dataset_folds = UT.get_folds(setid=2)
        dataset_codename = 'UT'
    elif dataset_name == 'SBU':
        dataset_folds = SBU.get_folds()
        dataset_codename = 'SBU'
    elif dataset_name == 'YMJA':
        dataset_folds = YMJA.get_folds()
        dataset_codename = 'YMJA'
    elif dataset_name == 'NTU':
        dataset_folds = NTU.get_folds()
        dataset_codename = 'NTU'
    elif dataset_name == 'NTU-V2':
        dataset_folds = NTU_V2.get_folds()
        dataset_codename = 'NTU-V2'

    if folds is not None:
        if dataset_codename.startswith('NTU'):
            dataset_folds = folds
        else:
            dataset_folds = list(map(int, folds))

    base_path = 'models/{}/{}'.format(dataset_name, experiment_name)
    print("Running for dataset:", dataset_name)
    print("Running for folds:", dataset_folds)
    print("Experiment name:", experiment_name)
    print("Experiment folder:", base_path)
    print("Number of reruns per dataset fold:", num_reruns)

    if os.path.exists(base_path):
        print("Resuming run protocol...")
    else:
        os.makedirs(base_path)

    if config_filepath != os.path.join(base_path, 'parameters.cfg'):
        copyfile(config_filepath, os.path.join(base_path, 'parameters.cfg'))

    print("***** Experiment parameters *****")
    print("Configuration file:", config_filepath)
    print("\t Skeleton info")
    for key, value in data_kwargs.items():
        print("\t > {}: {}".format(key, value))
    if fusion_mode is None:
        print("\t Model info")
        for key, value in model_kwargs.items():
            print("\t > {}: {}".format(key, value))
    else:
        print("\t Fusion info")
        print("\t > fusion mode:", fusion_mode)
        for key, value in fusion_kwargs.items():
            print("\t > {}: {}".format(key, value))
        print("\t > Criteria for weights:", criteria)
    print("\t > Using Temporal RN:", temp_rn)
    print("\t Training options")
    for key, value in train_kwargs.items():
        print("\t > {}: {}".format(key, value))
    print("\t > Batch Size:", batch_size)
    print("\t Evaluation options")
    print("\t > Pool average from videos sequences:", seqs_eval)

    if seqs_eval:
        fold_results_seqs = []
        data_kwargs_seqs = data_kwargs.copy()

        data_kwargs_seqs.setdefault('seq_step', data_kwargs['timesteps'] // 2)
        data_kwargs_seqs['flat_seqs'] = False
        print("\t > Step between sequences:", data_kwargs_seqs['seq_step'])

    fold_results = []
    for dataset_fold in dataset_folds:
        print("Running for fold:", dataset_fold)
        fold_path = base_path + '/fold_{}/'.format(dataset_fold)

        if fusion_mode == 'middle':
            fold_weights_filepaths = [
                find_best_weights(weights_base_path +
                                  '/fold_{}/'.format(dataset_fold),
                                  criteria=criteria)
                for weights_base_path in weights_base_paths
            ]
            print('> fold weights filepaths:', fold_weights_filepaths)

        if seqs_eval: reruns_val_acc_seqs = []
        best_epochs = []
        for rerun_idx in range(num_reruns):
            output_path = fold_path + '/rerun_{}'.format(rerun_idx)

            if os.path.exists(output_path + '/fit_history.csv'):
                hist_df = pd.read_csv(output_path + '/fit_history.csv')
            else:
                if fusion_mode is None:
                    if not temp_rn:
                        fit_history = train_rn(output_path,
                                               dataset_codename,
                                               dataset_fold=dataset_fold,
                                               **train_kwargs,
                                               data_kwargs=data_kwargs,
                                               model_kwargs=model_kwargs,
                                               batch_size=batch_size,
                                               gpus=1,
                                               verbose=verbose)
                    else:
                        fit_history = train_temp_rn(output_path,
                                                    dataset_codename,
                                                    dataset_fold=dataset_fold,
                                                    **train_kwargs,
                                                    data_kwargs=data_kwargs,
                                                    model_kwargs=model_kwargs,
                                                    batch_size=batch_size,
                                                    gpus=1,
                                                    verbose=verbose)
                elif fusion_mode == 'middle':
                    if not temp_rn:
                        fit_history = train_fused_rn(
                            output_path,
                            dataset_codename,
                            dataset_fold=dataset_fold,
                            weights_filepaths=fold_weights_filepaths,
                            **fusion_kwargs,
                            **train_kwargs,
                            batch_size=batch_size,
                            gpus=1,
                            verbose=verbose)
                    else:
                        fit_history = train_fused_temp_rn(
                            output_path,
                            dataset_codename,
                            dataset_fold=dataset_fold,
                            weights_filepaths=fold_weights_filepaths,
                            **fusion_kwargs,
                            **train_kwargs,
                            batch_size=batch_size,
                            gpus=1,
                            verbose=verbose)

                hist_df = parse_fit_history(fit_history)
                hist_df.to_csv(output_path + '/fit_history.csv', index=False)

            sorted_hist_df = hist_df.sort_values(['val_acc', 'val_loss'],
                                                 ascending=[False, True])
            best_epoch = sorted_hist_df.iloc[0]
            print(
                "> {}: ACC: {:.2%} Loss: {:.4f} - MAX val_ACC: {:.2%} val_Loss: {:.4f}"
                .format(rerun_idx, best_epoch.acc, best_epoch.loss,
                        best_epoch.val_acc, best_epoch.val_loss))
            best_epochs.append(best_epoch)

            if seqs_eval:
                rerun_path = output_path
                pooled_val_acc_filepath = rerun_path + '/pooled_val_acc.csv'
                if os.path.exists(pooled_val_acc_filepath):
                    val_acc_df = pd.read_csv(pooled_val_acc_filepath)
                else:
                    weights_path = rerun_path + '/relnet_weights-val_acc.hdf5'

                    if fusion_mode is None:
                        val_acc = predict_rn_seq(
                            weights_path,
                            dataset_codename,
                            dataset_fold=dataset_fold,
                            batch_size=batch_size,
                            verbose=verbose,
                            data_kwargs_seqs=data_kwargs_seqs,
                            model_kwargs=model_kwargs,
                            return_acc=True)
                    elif fusion_mode == 'middle':
                        val_acc = predict_fused_rn_seq(
                            weights_path,
                            dataset_codename,
                            dataset_fold=dataset_fold,
                            batch_size=batch_size,
                            verbose=verbose,
                            **fusion_kwargs,
                            return_acc=True)
                    else:
                        print("Seqs eval not implemented for fusion_mode:",
                              fusion_mode)
                        val_acc = -1

                    val_acc_df = pd.DataFrame.from_dict({'val_acc': [val_acc]})
                    val_acc_df.to_csv(pooled_val_acc_filepath, index=False)

                val_acc_series = val_acc_df.iloc[0]
                print("> Pooled Seqs val_ACC: {:.2%}".format(
                    val_acc_series.val_acc))
                reruns_val_acc_seqs.append(val_acc_series)

        summary_fold = pd.concat(best_epochs,
                                 axis=1).transpose().reset_index(drop=True)
        summary_fold.index.name = 'rerun'
        summary_fold.to_csv(fold_path + '/summary.csv')

        sorted_summary_fold = summary_fold.sort_values(['val_acc', 'val_loss'],
                                                       ascending=[False, True])
        best_fold = sorted_summary_fold.iloc[0]
        fold_results.append(best_fold)

        if seqs_eval:
            summary_fold_seqs = pd.concat(
                reruns_val_acc_seqs, axis=1).transpose().reset_index(drop=True)
            summary_fold_seqs.index.name = 'rerun'
            summary_fold_seqs.to_csv(fold_path + '/summary-pooled_val_acc.csv')

            best_fold_seqs = summary_fold_seqs.loc[
                summary_fold_seqs.val_acc.idxmax()]
            fold_results_seqs.append(best_fold_seqs)

    summary_df = pd.concat(fold_results,
                           axis=1).transpose().reset_index(drop=True)
    summary_df.index.name = 'fold'
    summary_df.to_csv(base_path + '/summary.csv')

    mean = summary_df.mean().rename('mean')
    std = summary_df.std().rename('std')
    stats = pd.concat([mean, std], axis=1).T
    summary_df = pd.concat([summary_df, stats])

    print("+++++ Summarized results:")
    print("\nSummary for Dataset, Folds, Experiment:")
    print("> {} | {} | {}".format(dataset_codename, dataset_folds,
                                  experiment_name))
    pretty_print_stats(summary_df)
    print("Val ACC Mean: {:.2%} Std: {:.4f}".format(mean.val_acc, std.val_acc))

    if seqs_eval:
        summary_seqs = pd.concat(fold_results_seqs,
                                 axis=1).transpose().reset_index(drop=True)
        summary_seqs.index.name = 'fold'
        summary_seqs.to_csv(base_path + '/summary-pooled_val_acc.csv')

        print("+++++ Seqs eval results:")
        mean = summary_seqs.mean().rename('mean')
        std = summary_seqs.std().rename('std')
        stats = pd.concat([mean, std], axis=1).T
        summary_seqs = pd.concat([summary_seqs, stats])
        print(summary_seqs.to_string(formatters=["{:.2%}".format]))
Esempio n. 7
0
def predict_fused_temp_rn(fusion_weights_path,
                          dataset_name,
                          dataset_fold,
                          config_filepaths,
                          freeze_g_theta=False,
                          fuse_at_fc1=False,
                          batch_size=32,
                          verbose=2,
                          gpus=1):

    if verbose > 0:
        print("***** Predicting parameters *****")
        print("\t fusion_weights_path:", fusion_weights_path)
        print("\t Dataset:", dataset_name)
        print("\t Dataset fold:", dataset_fold)
        print("\t Fusion info")
        print("\t > config_filepaths:", config_filepaths)
        print("\t > freeze_g_theta:", freeze_g_theta)
        print("\t > fuse_at_fc1:", fuse_at_fc1)
        print("\t Predicting options")
        print("\t > Batch Size:", batch_size)

    ####
    data_kwargs, _, _ = read_config(config_filepaths[0])

    if verbose > 0:
        print("Initializing Data Generator...")
    val_generator = DataGeneratorSeq(dataset_name,
                                     dataset_fold,
                                     'validation',
                                     batch_size=batch_size,
                                     reshuffle=False,
                                     shuffle_indiv_order=False,
                                     pad_sequences=True,
                                     **data_kwargs)
    X_val, Y_val = val_generator[0]

    _, seq_len, num_joints, *object_shape = np.array(X_val).shape
    num_joints = num_joints // 2
    object_shape = tuple(object_shape)
    output_size = len(Y_val[0])

    models_kwargs = []
    for config_filepath in config_filepaths:
        data_kwargs, model_kwargs, train_kwargs = read_config(config_filepath)
        timesteps = data_kwargs['timesteps']
        add_joint_idx = data_kwargs['add_joint_idx']
        add_body_part = data_kwargs['add_body_part']
        overhead = add_joint_idx + add_body_part  # True/False = 1/0
        num_dim = (object_shape[0] - overhead) // timesteps
        model_kwargs['num_dim'] = num_dim
        model_kwargs['overhead'] = overhead
        models_kwargs.append(model_kwargs)

    train_kwargs['drop_rate'] = 0
    weights_filepaths = [[] for _ in config_filepaths]

    if verbose > 0:
        print("Creating model...")
    model = get_fusion_model(num_joints,
                             object_shape,
                             output_size,
                             seq_len,
                             train_kwargs,
                             models_kwargs,
                             weights_filepaths,
                             freeze_g_theta=freeze_g_theta,
                             fuse_at_fc1=fuse_at_fc1)

    if verbose > 0:
        print("Loading weights...")
    model.load_weights(fusion_weights_path)

    if verbose > 0:
        print("Starting predicting...")

    Y_pred = []
    Y_val = []
    if verbose > 0:
        progbar = progressbar.ProgressBar(max_value=len(val_generator))
    for batch_idx in range(len(val_generator)):
        if verbose > 0: progbar.update(batch_idx)
        batch_x, batch_y = val_generator[batch_idx]
        Y_pred += list(model.predict_on_batch(batch_x))
        Y_val += batch_y.tolist()
    if verbose > 0: progbar.finish()

    y_true = np.array(Y_val)
    y_pred = np.array(Y_pred)

    n_hits = np.sum(y_true.argmax(axis=-1) == y_pred.argmax(axis=-1))
    acc = n_hits / y_true.shape[0]

    if verbose > 0:
        print("Validation acc: {:.2%}".format(acc))

    # Convert back from to_categorical
    Y_pred = np.argmax(Y_pred, axis=1).tolist()
    Y_val = np.argmax(Y_val, axis=1).tolist()

    return Y_pred, Y_val