Esempio n. 1
0
def pp_ackley(xi, x):
    lower = [-32.768] * len(xi)
    upper = [32.768] * len(xi)
    #Alpha bounds!!
    lower, upper = alpha_bounds(xi, lower, upper)
    bounds = list(zip([lower], [upper]))
    res = scipy.optimize.differential_evolution(ackley,
                                                bounds,
                                                args=(xi, x),
                                                updating='immediate',
                                                disp=False,
                                                tol=0.001)
    return float(res.x)
Esempio n. 2
0
    def xi_grid(self,
                xi,
                x=None,
                alpha_grid_distribution=None,
                alpha_star=None,
                m=None,
                is_scaled=False):
        if alpha_grid_distribution is None:
            alpha_grid_distribution = self.alpha_grid_distribution
        if m is None:
            m = self.m
        '''
        Creates a grid of points for the dimension d.
        If concenrated_on_feedback is selected, then also a point alpha_star should be provided. Grid points will be concentrated around that point.
        '''
        if is_scaled:
            alpha_min = 0
            alpha_max = 1
        else:
            lower = np.array([i[0] for i in self.original_bounds])
            upper = np.array([i[1] for i in self.original_bounds])
            alpha_min, alpha_max = alpha_bounds(xi, lower, upper)

        if alpha_grid_distribution == 'evenly':
            noise_level_gridpoints = 0.01  #Add random noise to grid points to avoid singluraity issues in datamatrix. Numbers present noise variance as a percentage of the length of the interval of variable bounds: 0.01 is good starting point
            epsilon_boundary = (alpha_max - alpha_min) * (
                noise_level_gridpoints / 2)  #Number away from the boundary
            epsilon_noise = np.abs(
                alpha_max - alpha_min
            ) * noise_level_gridpoints  #Level of noise depends on noise level parameter and length of the interval of var bounds
            alpha = []
            while len(alpha) != m:
                alpha = np.linspace(alpha_min + epsilon_boundary,
                                    alpha_max - epsilon_boundary,
                                    num=m) + np.random.normal(
                                        0, epsilon_noise, m)
                alpha = np.clip(alpha, alpha_min, alpha_max)
                alpha = np.unique(alpha)  #delete duplicates
        elif alpha_grid_distribution == 'cauchy':
            ''' Gridpoints are drawn from Cauchy-dsitribution with location alpha_star '''
            alpha = []
            while len(alpha) != m:
                noise_level_gridpoints = 0.07  #Add random noise to grid points to avoid singluraity issues in datamatrix. Numbers present noise variance as a percentage of the length of the interval of variable bounds: 0.07 is good starting point
                alpha = scipy.stats.cauchy.rvs(
                    loc=float(alpha_star),
                    scale=np.abs(alpha_max - alpha_min) *
                    noise_level_gridpoints,
                    size=m)
                alpha = np.clip(alpha, alpha_min, alpha_max)
                alpha = np.unique(alpha)  #delete duplicates
        elif alpha_grid_distribution == 'TGN':
            ''' Gridpoints are drawn from Truncated Generalized Normal (TGN) distribution with the location parameter alpha_star and the form parameter gamma '''
            ''' The speed of transformation from uniform distribution to normal distribution as iteration_number ---> infinity '''
            s = self.TGN_speed  #speed parameter that lies in (0,1]
            gamma = 3 / np.power(np.max([self.iter_number + 1 - self.D, 1]),
                                 s) + 2

            alpha = []
            while len(alpha) != m:
                alpha = TGN_sample(size=m,
                                   gamma=gamma,
                                   alpha=float(alpha_star),
                                   x_min=alpha_min,
                                   x_max=alpha_max)
                alpha = np.clip(alpha, alpha_min, alpha_max)
                alpha = np.unique(alpha)  #delete duplicates

        alpha.shape = (m, 1)
        xi = np.array(xi).reshape(1, self.D)
        xi_grid = np.matmul(alpha, xi)
        if x is None:
            xi_column_indices = [
                j for j in range(self.D)
                if j not in np.where((xi_grid == 0).all(0))[0]
            ]
            #Remove zero columns i.e. columns whrer xi_d = 0 ?
            xi_grid = xi_grid[:, xi_column_indices]
        else:
            # x_column_indices = np.where((xi_grid == 0).all(0))[0]
            #xi_grid[:,x_column_indices] = np.tile(x, (m, 1))
            xi_grid = xi_grid + np.tile(x, (m, 1))
        return xi_grid