Esempio n. 1
0
                                    len_profile,
                                    quad_wake=quad_wake)

        bp_test = tracking.get_gaussian_profile(40e-15, tt_halfrange,
                                                len_profile, charge,
                                                tracker0.energy_eV)
        screen_sim = tracker0.matrix_forward(bp_test, [10e-3, 10e-3],
                                             [0, 0])['screen']
        all_emittances = []
        all_beamsizes = []
        for proj in projx0:
            screen_meas = get_screen_from_proj(proj, x_axis0, invert_x0)
            all_beamsizes.append(screen_meas.gaussfit.sigma)
            emittance_fit = misc.fit_nat_beamsize(screen_meas,
                                                  screen_sim,
                                                  n_emittances[0],
                                                  smoothen,
                                                  print_=False)
            #print(screen_meas.gaussfit.sigma)
            all_emittances.append(emittance_fit)

        new_emittance = np.mean(all_emittances)
        print(main_label, 'Emittance [nm]', new_emittance * 1e9)

        n_emittances[0] = new_emittance

        tracker0.n_emittances[0] = new_emittance

        new_screen0 = tracker0.matrix_forward(bp_test, [10e-3, 10e-3],
                                              [0, 0])['screen']
        ms.figure('Test nat bs')
Esempio n. 2
0
def main():
    fig_paper = ms.figure('Comparison plots')
    subplot = ms.subplot_factory(2, 2)
    sp_ctr_paper = 1

    #images0 = dict0['projx'][-1]
    #x_axis = dict0['x_axis']*1e-6

    #if np.diff(x_axis)[0] < 0:
    #    x_axis = x_axis[::-1]
    #    invert_x = True
    #else:
    #    invert_x = False

    process_dict = {
        'Long': {
            'filename': file38,
            'main_dict': dict38,
            'proj0': dict0['projx'][-1],
            'x_axis0': dict0['x_axis'] * 1e-6,
            'n_offset': None,
            'filename0': file0,
            'blmeas': blmeas38,
            'flipx': False,
        },
        'Medium': {
            'filename': file25,
            'main_dict': dict25,
            'proj0': dict25['projx'][7],
            'x_axis0': dict25['x_axis'] * 1e-6,
            'n_offset': 0,
            'filename0': file25,
            'blmeas': blmeas25,
            'flipx': False,
        },
    }

    for main_label, p_dict in process_dict.items():
        #if main_label != 'Medium':
        #    continue

        projx0 = p_dict['proj0']
        x_axis0 = p_dict['x_axis0']
        if np.diff(x_axis0)[0] < 0:
            x_axis0 = x_axis0[::-1]
            invert_x0 = True

        all_mean = []
        for proj in projx0:
            screen = get_screen_from_proj(proj, x_axis0, invert_x0)
            xx, yy = screen._xx, screen._yy
            gf = gaussfit.GaussFit(xx, yy)
            all_mean.append(gf.mean)

        mean0 = np.mean(all_mean)

        timestamp0 = misc.get_timestamp(os.path.basename(p_dict['filename0']))
        tracker0 = tracking.Tracker(
            archiver_dir + 'archiver_api_data/2020-10-03.h5', timestamp0,
            struct_lengths, n_particles, n_emittances, screen_bins,
            screen_cutoff, smoothen, profile_cutoff, len_profile)

        bp_test = tracking.get_gaussian_profile(40e-15, tt_halfrange,
                                                len_profile, charge,
                                                tracker0.energy_eV)
        screen_sim = tracker0.matrix_forward(bp_test, [10e-3, 10e-3],
                                             [0, 0])['screen']
        all_emittances = []
        for proj in projx0:
            screen_meas = get_screen_from_proj(proj, x_axis0, invert_x0)
            emittance_fit = misc.fit_nat_beamsize(screen_meas, screen_sim,
                                                  n_emittances[0])
            all_emittances.append(emittance_fit)

        new_emittance = np.mean(all_emittances)
        print(main_label, 'Emittance [nm]', new_emittance * 1e9)
        n_emittances[0] = new_emittance

        dict_ = p_dict['main_dict']
        file_ = p_dict['filename']
        x_axis = dict_['x_axis'] * 1e-6
        y_axis = dict_['y_axis'] * 1e-6
        n_offset = p_dict['n_offset']

        if np.diff(x_axis)[0] < 0:
            x_axis = x_axis[::-1]
            invert_x = True
        else:
            invert_x = False

        if np.diff(y_axis)[0] < 0:
            y_axis = y_axis[::-1]
            invert_y = True
        else:
            invert_y = False

        timestamp = misc.get_timestamp(os.path.basename(file_))
        tracker = tracking.Tracker(
            archiver_dir + 'archiver_api_data/2020-10-03.h5', timestamp,
            struct_lengths, n_particles, n_emittances, screen_bins,
            screen_cutoff, smoothen, profile_cutoff, len_profile)

        blmeas = p_dict['blmeas']
        flip_measured = p_dict['flipx']
        profile_meas = tracking.profile_from_blmeas(blmeas,
                                                    tt_halfrange,
                                                    charge,
                                                    tracker.energy_eV,
                                                    subtract_min=True)
        profile_meas.reshape(len_profile)
        profile_meas2 = tracking.profile_from_blmeas(blmeas,
                                                     tt_halfrange,
                                                     charge,
                                                     tracker.energy_eV,
                                                     subtract_min=True,
                                                     zero_crossing=2)
        profile_meas2.reshape(len_profile)
        if flip_measured:
            profile_meas.flipx()
        else:
            profile_meas2.flipx()

        profile_meas.cutoff(1e-2)
        profile_meas2.cutoff(1e-2)

        beam_offsets = [0., -(dict_['value'] * 1e-3 - mean_struct2)]
        distance_um = (gaps[n_streaker] / 2. - beam_offsets[n_streaker]) * 1e6
        if n_offset is not None:
            distance_um = distance_um[n_offset]
            beam_offsets = [beam_offsets[0], beam_offsets[1][n_offset]]

        tdc_screen1 = tracker.matrix_forward(profile_meas, gaps,
                                             beam_offsets)['screen']
        tdc_screen2 = tracker.matrix_forward(profile_meas, gaps,
                                             beam_offsets)['screen']

        plt.figure(fig_paper.number)
        sp_profile_comp = subplot(sp_ctr_paper,
                                  title=main_label,
                                  xlabel='t [fs]',
                                  ylabel='Intensity (arb. units)')
        sp_ctr_paper += 1
        profile_meas.plot_standard(sp_profile_comp,
                                   norm=True,
                                   color='black',
                                   label='TDC',
                                   center='Right')

        ny, nx = 2, 4
        subplot = ms.subplot_factory(ny, nx)
        sp_ctr = np.inf

        all_profiles, all_screens = [], []

        if n_offset is None:
            projections = dict_['projx']
        else:
            projections = dict_['projx'][n_offset]

        for n_image in range(len(projections)):
            screen = get_screen_from_proj(projections[n_image], x_axis,
                                          invert_x)
            screen.crop()
            screen._xx = screen._xx - mean0

            gauss_dict = tracker.find_best_gauss(
                sig_t_range,
                tt_halfrange,
                screen,
                gaps,
                beam_offsets,
                n_streaker,
                charge,
                self_consistent=self_consistent)
            best_screen = gauss_dict['reconstructed_screen']
            best_screen.cutoff(1e-3)
            best_screen.crop()
            best_profile = gauss_dict['reconstructed_profile']
            if n_image == 0:
                screen00 = screen
                bp00 = best_profile
                best_screen00 = best_screen
            best_gauss = gauss_dict['best_gauss']

            if sp_ctr > (ny * nx):
                ms.figure('All reconstructions Distance %i %s' %
                          (distance_um, main_label))
                sp_ctr = 1

            if n_image % 2 == 0:
                sp_profile = subplot(sp_ctr, title='Reconstructions')
                sp_ctr += 1
                sp_screen = subplot(sp_ctr, title='Screens')
                sp_ctr += 1
                profile_meas.plot_standard(sp_profile,
                                           color='black',
                                           label='Measured',
                                           norm=True,
                                           center='Right')
                tdc_screen1.plot_standard(sp_screen, color='black')

            color = screen.plot_standard(sp_screen,
                                         label=n_image)[0].get_color()
            best_screen.plot_standard(sp_screen, color=color, ls='--')
            best_profile.plot_standard(sp_profile,
                                       label=n_image,
                                       norm=True,
                                       center='Right')
            sp_profile.legend()
            sp_screen.legend()

            all_profiles.append(best_profile)

        # Averaging the reconstructed profiles
        all_profiles_time, all_profiles_current = [], []
        for profile in all_profiles:
            profile.shift('Right')
            #all_profiles_time.append(profile.time - profile.time[np.argmax(profile.current)])
            all_profiles_time.append(profile.time)
        new_time = np.linspace(min(x.min() for x in all_profiles_time),
                               max(x.max() for x in all_profiles_time),
                               len_profile)
        for tt, profile in zip(all_profiles_time, all_profiles):
            new_current = np.interp(new_time,
                                    tt,
                                    profile.current,
                                    left=0,
                                    right=0)
            new_current *= charge / new_current.sum()
            all_profiles_current.append(new_current)
        all_profiles_current = np.array(all_profiles_current)
        mean_profile = np.mean(all_profiles_current, axis=0)
        std_profile = np.std(all_profiles_current, axis=0)
        average_profile = tracking.BeamProfile(new_time, mean_profile,
                                               tracker.energy_eV, charge)
        average_profile.plot_standard(sp_profile_comp,
                                      label='Reconstructed',
                                      norm=True,
                                      center='Right')

        ms.figure('Test averaging %s' % main_label)
        sp = plt.subplot(1, 1, 1)
        for yy in all_profiles_current:
            sp.plot(new_time, yy / np.trapz(yy, new_time), lw=0.5)

        to_plot = [
            ('Average', new_time, mean_profile, 'black', 3),
            ('+1 STD', new_time, mean_profile + std_profile, 'black', 1),
            ('-1 STD', new_time, mean_profile - std_profile, 'black', 1),
        ]

        integral = np.trapz(mean_profile, new_time)
        for pm, ctr, color in [(profile_meas, 1, 'red'),
                               (profile_meas2, 2, 'green')]:
            #factor = integral/np.trapz(pm.current, pm.time)
            #t_meas = pm.time-pm.time[np.argmax(pm.current)]
            i_meas = np.interp(new_time, pm.time, pm.current)
            bp = tracking.BeamProfile(new_time,
                                      i_meas,
                                      energy_eV=tracker.energy_eV,
                                      charge=charge)
            bp.shift('Right')

            to_plot.append(('TDC %i' % ctr, bp.time, bp.current, color, 3))

        for label, tt, profile, color, lw in to_plot:
            gf = gaussfit.GaussFit(tt, profile)
            width_fs = gf.sigma * 1e15
            if label is None:
                label = ''
            label = (label + ' %i fs' % width_fs).strip()
            factor = np.trapz(profile, tt)
            sp.plot(tt, profile / factor, color=color, lw=lw, label=label)

        sp.legend(title='Gaussian fit $\sigma$')

    plt.show()
Esempio n. 3
0
    color = sp.plot(x_axis, projX)[0].get_color()
    sp.axvline(gf.mean, color=color, ls='--')
    sp.plot(gf.xx, gf.reconstruction, ls='--', color=color)
    all_means.append(gf.mean)
    n_proj += 1
    sp.set_xlim(-0.001, 0.001)

all_means = np.array(all_means)

sp_all = subplot(sp_ctr, title='All means')
sp_ctr += 1
sp_all.hist(all_means * 1e6)

bp_test = tracking.get_gaussian_profile(40e-15, tt_halfrange, len_profile,
                                        charge, energy_eV)

screen_sim = tracker.matrix_forward(bp_test, [10e-3, 10e-3], [0, 0])['screen']

emittances_fit = []
for n_image, image in enumerate(images0):
    screen_meas = tracking.ScreenDistribution(x_axis, image.T.sum(axis=0))
    emittance_fit = misc.fit_nat_beamsize(screen_meas, screen_sim,
                                          n_emittances[0])
    emittances_fit.append(emittance_fit)

emittances_fit = np.array(emittances_fit)
mean_emittance = emittances_fit.mean()

plt.show()
                               smoothen,
                               profile_cutoff,
                               len_profile,
                               optics0=optics0)
    r12 = tracker.calcR12()[n_streaker]

    bp_test = tracking.get_gaussian_profile(40e-15, tt_halfrange, len_profile,
                                            charge, energy_eV)
    forward0 = tracker.matrix_forward(bp_test, [10e-3, 10e-3], [0, 0])
    screen_sim = forward0['screen']

    emittances_fit = []
    for n_image, image in enumerate(dict_['Image'][-1]):
        screen_meas = tracking.ScreenDistribution(x_axis, image.T.sum(axis=0))
        emittance_fit = misc.fit_nat_beamsize(screen_meas,
                                              screen_sim,
                                              n_emittances[0],
                                              print_=n_image == 0)
        emittances_fit.append(emittance_fit)

        #if n_image == 0:
        #    ms.figure('Optics %i' % n_optics)
        #    sp = plt.subplot(1,1,1)
        #    sp.plot(screen_meas.x-screen_meas.gaussfit.mean, screen_meas.intensity/screen_meas.intensity.max(), label='Meas')
        #    sp.plot(screen_sim.x, screen_sim.intensity/screen_sim.intensity.max(), label='Sim')
        #    sp.legend()

    emittances_fit = np.array(emittances_fit)
    mean_emittance = emittances_fit.mean()

    n_emittances = [mean_emittance, 500e-9]
    tracker = tracking.Tracker(archiver_dir +