Esempio n. 1
0
   5      | 0.25355      |    1          | 0.254
   6      | 0.10478      |    0          | 0.345
   7      | 0.09657      |    0          | 0.442
   8      | 0.03656      |    0          | 0.478
   9      | 0.02772      |    0          | 0.506
  10      | 0.01111      |    0          | 0.517
  11      | 0.00735      |    0          | 0.524
  12      | 0.00310      |    0          | 0.527
  13      | 0.00190      |    0          | 0.529
  14      | 0.00083      |    0          | 0.530
  15      | 0.00049      |    0          | 0.531
  16      | 0.00022      |    0          | 0.531
  17      | 0.00013      |    0          | 0.531
  18      | 0.00006      |    0          | 0.531
  19      | 0.00003      |    0          | 0.531"""
Vs_VI, pis_VI = value_iteration(mdp, gamma=GAMMA, nIt=20, grade_print=make_grader(expected_output))

for (V, pi) in zip(Vs_VI[:10], pis_VI[:10]):
    plt.figure(figsize=(3,3))
    plt.imshow(V.reshape(4,4), cmap='gray', interpolation='none', clim=(0,1))
    ax = plt.gca()
    ax.set_xticks(np.arange(4)-.5)
    ax.set_yticks(np.arange(4)-.5)
    ax.set_xticklabels([])
    ax.set_yticklabels([])
    Y, X = np.mgrid[0:4, 0:4]
    a2uv = {0: (-1, 0), 1:(0, -1), 2:(1,0), 3:(-1, 0)}
    Pi = pi.reshape(4,4)
    for y in range(4):
        for x in range(4):
            a = Pi[y, x]
Esempio n. 2
0

expected_output = """Iteration | # chg actions | V[0]
----------+---------------+---------
   0      |      1        | -0.00000
   1      |      9        | 0.00000
   2      |      2        | 0.39785
   3      |      1        | 0.45546
   4      |      0        | 0.53118
   5      |      0        | 0.53118
   6      |      0        | 0.53118
   7      |      0        | 0.53118
   8      |      0        | 0.53118
   9      |      0        | 0.53118
  10      |      0        | 0.53118
  11      |      0        | 0.53118
  12      |      0        | 0.53118
  13      |      0        | 0.53118
  14      |      0        | 0.53118
  15      |      0        | 0.53118
  16      |      0        | 0.53118
  17      |      0        | 0.53118
  18      |      0        | 0.53118
  19      |      0        | 0.53118"""

Vs_PI, pis_PI = policy_iteration(mdp,
                                 gamma=0.95,
                                 nIt=20,
                                 grade_print=make_grader(expected_output))
plt.plot(Vs_PI)
Esempio n. 3
0
def compute_vpi(pi, mdp, gamma):
    # use pi[state] to access the action that's prescribed by this policy
    V = np.ones(mdp.nS) # REPLACE THIS LINE WITH YOUR CODE
    A = np.zeros((mdp.nS,mdp.nS))
    B = np.zeros(mdp.nS)
    for s in range(mdp.nS):
      a = pi[s]
     # p = mdp.P[s][a][0]
     # ns = mdp.P[s][a][1]
     # r = mdp.P[s][a][2]
      for p, ns, r in mdp.P[s][pi[s]]:
        A[s][ns] += GAMMA*p
        B[s] += p*r
    A = A - np.eye(mdp.nS)
    V = -np.linalg.solve(A,B)

    	#V[s] = mdp.P[s][pi[s]][0]*(mdp.P[s][pi[s]][2] + GAMMA*V[mdp.P[s][a][1]])
    return V


    def compute_qpi(vpi, mdp, gamma):
    Qpi = np.zeros([mdp.nS, mdp.nA]) # REPLACE THIS LINE WITH YOUR CODE
    for s in range(mdp.nS):
      for a in range(mdp.nA):
        for p,ns,r in mdp.P[s][a]:
          Qpi[s,a] += p*r + gamma*p*vpi[ns]

    return Qpi

expected_Qpi = np.array([[  0.38 ,   3.135,   1.14 ,   0.095],
       [  0.57 ,   3.99 ,   2.09 ,   0.95 ],
       [  1.52 ,   4.94 ,   3.04 ,   1.9  ],
       [  2.47 ,   5.795,   3.23 ,   2.755],
       [  3.8  ,   6.935,   4.56 ,   0.855],
       [  4.75 ,   4.75 ,   4.75 ,   4.75 ],
       [  4.94 ,   8.74 ,   6.46 ,   2.66 ],
       [  6.65 ,   6.65 ,   6.65 ,   6.65 ],
       [  7.6  ,  10.735,   8.36 ,   4.655],
       [  7.79 ,  11.59 ,   9.31 ,   5.51 ],
       [  8.74 ,  12.54 ,  10.26 ,   6.46 ],
       [ 10.45 ,  10.45 ,  10.45 ,  10.45 ],
       [ 11.4  ,  11.4  ,  11.4  ,  11.4  ],
       [ 11.21 ,  12.35 ,  12.73 ,   9.31 ],
       [ 12.16 ,  13.4  ,  14.48 ,  10.36 ],
       [ 14.25 ,  14.25 ,  14.25 ,  14.25 ]])

Qpi = compute_qpi(np.arange(mdp.nS), mdp, gamma=0.95)
if np.all(np.isclose(expected_Qpi, Qpi, atol=1e-4)):
    print("Test passed")
else:
    print("Expected: ", expected_Qpi)
    print("Actual: ", Qpi)



 def policy_iteration(mdp, gamma, nIt, grade_print=print):
    Vs = []
    pis = []
    pi_prev = np.zeros(mdp.nS,dtype='int')
    pis.append(pi_prev)
    grade_print("Iteration | # chg actions | V[0]")
    grade_print("----------+---------------+---------")
    for it in range(nIt):        
        # YOUR CODE HERE
        # you need to compute qpi which is the state-action values for current pi
        vpi = compute_vpi(pi_prev, mdp, gamma)
        qpi = compute_qpi(vpi, mdp, gamma)

        pi = qpi.argmax(axis=1)
        grade_print("%4i      | %6i        | %6.5f"%(it, (pi != pi_prev).sum(), vpi[0]))
        Vs.append(vpi)
        pis.append(pi)
        pi_prev = pi
    return Vs, pis

expected_output = """Iteration | # chg actions | V[0]
----------+---------------+---------
   0      |      1        | -0.00000
   1      |      9        | 0.00000
   2      |      2        | 0.39785
   3      |      1        | 0.45546
   4      |      0        | 0.53118
   5      |      0        | 0.53118
   6      |      0        | 0.53118
   7      |      0        | 0.53118
   8      |      0        | 0.53118
   9      |      0        | 0.53118
  10      |      0        | 0.53118
  11      |      0        | 0.53118
  12      |      0        | 0.53118
  13      |      0        | 0.53118
  14      |      0        | 0.53118
  15      |      0        | 0.53118
  16      |      0        | 0.53118
  17      |      0        | 0.53118
  18      |      0        | 0.53118
  19      |      0        | 0.53118"""

Vs_PI, pis_PI = policy_iteration(mdp, gamma=0.95, nIt=20, grade_print=make_grader(expected_output))
plt.plot(Vs_PI);