Esempio n. 1
0
    def test_land_average(self):
        """check land average is correct when all neighbours contain 
		missing data."""
        data = np.array([[1, -999, 1], [-999, -999, -999], [1, -999, 1]])
        pixel_loc = np.array([1, 1])
        neighbours = {
            'left_nbor': np.array([0, 1]),
            'right_nbor': np.array([2, 1]),
            'up_nbor': np.array([1, 0]),
            'down_nbor': np.array([1, 1])
        }
        expected_average = 1
        average = pixel_average(pixel_loc, neighbours, data)
        self.assertEqual(expected_average, average)
Esempio n. 2
0
    def test_partial_pixel_average(self):
        """check neighbourhood average is correct when some neighbours contain 
		missing data."""
        data = np.array([[3, 4, 5], [4, -999, -999], [2, -999, 5]])
        pixel_loc = np.array([1, 1])
        neighbours = {
            'left_nbor': np.array([0, 1]),
            'right_nbor': np.array([2, 1]),
            'up_nbor': np.array([1, 0]),
            'down_nbor': np.array([1, 1])
        }
        expected_average = 4
        average = pixel_average(pixel_loc, neighbours, data)
        self.assertEqual(expected_average, average)
Esempio n. 3
0
    def test_complete_pixel_average(self):
        """check neighbourhood average is correct when no neighbours contain 
		missing data."""
        data = np.array([[3, 4, 5], [4, -999, 6], [2, 8, 5]])
        pixel_loc = np.array([1, 1])
        neighbours = {
            'left_nbor': np.array([0, 1]),
            'right_nbor': np.array([2, 1]),
            'up_nbor': np.array([1, 0]),
            'down_nbor': np.array([1, 1])
        }
        expected_average = int(5.5)  # All values must be integers
        average = pixel_average(pixel_loc, neighbours, data)
        self.assertEqual(expected_average, average)
	def test_land_average(self):
		"""check land average is correct when all neighbours contain 
		missing data."""
		data = np.array([[1,-999,1],
					     [-999,-999,-999],
					     [1,-999,1]])
		pixel_loc = np.array([1,1])
		neighbours = {
			'left_nbor': np.array([0, 1]),
			'right_nbor': np.array([2, 1]),
			'up_nbor': np.array([1, 0]),
			'down_nbor': np.array([1, 1])
		}
		expected_average = 1
		average = pixel_average(pixel_loc, neighbours, data)
		self.assertEqual(expected_average, average)
	def test_partial_pixel_average(self):
		"""check neighbourhood average is correct when some neighbours contain 
		missing data."""
		data = np.array([[3,4,5],
					     [4,-999,-999],
					     [2,-999,5]])
		pixel_loc = np.array([1,1])
		neighbours = {
			'left_nbor': np.array([0, 1]),
			'right_nbor': np.array([2, 1]),
			'up_nbor': np.array([1, 0]),
			'down_nbor': np.array([1, 1])
		}
		expected_average = 4
		average = pixel_average(pixel_loc, neighbours, data)
		self.assertEqual(expected_average, average)
	def test_complete_pixel_average(self):
		"""check neighbourhood average is correct when no neighbours contain 
		missing data."""
		data = np.array([[3,4,5],
					     [4,-999,6],
					     [2,8,5]])
		pixel_loc = np.array([1,1])
		neighbours = {
			'left_nbor': np.array([0, 1]),
			'right_nbor': np.array([2, 1]),
			'up_nbor': np.array([1, 0]),
			'down_nbor': np.array([1, 1])
		}
		expected_average = int(5.5) # All values must be integers
		average = pixel_average(pixel_loc, neighbours, data)
		self.assertEqual(expected_average, average)