def create_matrix_nan(): """Create nullity matrix and save the plot to ``matrix_nan.png`` in the "OUT_DATA" directory. """ index_missing = gate_plot.isna().sum().sort_values().index sorted_by_missing = msno.nullity_sort(gate_plot[index_missing]) matrix_nan = msno.matrix(sorted_by_missing) matrix_nan.set_ylabel("INDEX OF OBSERVATIONS", labelpad=0, fontsize=18) matrix_nan.get_xticklabels()[19].set_fontweight("bold") matrix_nan.figure.savefig(ppj("OUT_FIGURES", "matrix_nan.png"), bbox_inches="tight")
) plt.show() data = data.loc[~data.variable.str.contains('exploitable'), :] #Deep dive:National rainfall index msno.matrix(variable_slice(data, 'national_rainfall_index'), inline=False, sort='descending') plt.xlabel('Time period') plt.ylabel('Country') plt.title( 'Missing national rainfall index data across countries and time periods \n \n \n \n' ) data = data.loc[~(data.variable == 'national_rainfall_index')] #By country north_america = subregion(data, 'North America') msno.matrix(msno.nullity_sort(time_slice(north_america, '2013-2017'), sort='descending').T, inline=False) plt.show() msno.nullity_filter(country_slice(data, 'Bahamas').T, filter='bottom', p=0.1) #By country for a single variable geo = r'world.json' null_data = recent['agg_to_gdp'].notnull() * 1 map = folium.Map(location=[48, -102], zoom_start=2) map.choropleth( geo_data=geo, data=null_data, columns=['country', 'agg_to_gdp'], key_on='feature.properties.name', reset=True, fill_color='GnBu',
def test_descending_sort(self): result = msno.nullity_sort(self.df, sort='descending') expected = self.df.iloc[[0, 1, 2]] assert result.equals(expected)
def test_no_op(self): expected = self.df result = msno.nullity_sort(self.df, sort=None) assert result.equals(expected)