Esempio n. 1
0
def test_get_expectation_values_adaptive_factories(factory):
    num_steps = 8
    fac = AdaExpFactory(steps=num_steps, scale_factor=2.0, asymptote=None)
    executor = apply_seed_to_func(f_exp_up, seed=1)

    # Expectation values haven't been computed at any scale factors yet
    assert isinstance(fac.get_expectation_values(), np.ndarray)
    assert len(fac.get_expectation_values()) == 0

    # Compute expectation values at all the scale factors
    fac.iterate(executor)
    assert isinstance(fac.get_scale_factors(), np.ndarray)

    # Given this seeded executor, the scale factors should be as follows
    correct_scale_factors = np.array(
        [
            1.0,
            2.0,
            4.0,
            4.20469548,
            4.20310693,
            4.2054822,
            4.2031916,
            4.2052843,
        ]
    )
    correct_expectation_values = np.array(
        [executor(scale) for scale in correct_scale_factors]
    )
    assert len(fac.get_expectation_values()) == num_steps
    assert np.allclose(
        fac.get_expectation_values(), correct_expectation_values, atol=1e-3
    )
Esempio n. 2
0
def test_ada_exp_factory_no_asympt_more_steps(test_f: Callable[[float],
                                                               float], ):
    """Test of the adaptive exponential extrapolator."""
    seeded_f = apply_seed_to_func(test_f, SEED)
    fac = AdaExpFactory(steps=8, scale_factor=2.0, asymptote=None)
    fac.iterate(seeded_f)
    assert np.isclose(fac.reduce(), seeded_f(0, err=0), atol=CLOSE_TOL)
Esempio n. 3
0
def test_ada_exp_fac_with_asympt_more_steps(
    test_f: Callable[[float], float], avoid_log: bool
):
    """Test of the adaptive exponential extrapolator with more steps."""
    seeded_f = apply_seed_to_func(test_f, SEED)
    fac = AdaExpFactory(
        steps=6, scale_factor=2.0, asymptote=A, avoid_log=avoid_log
    )
    fac.iterate(seeded_f)
    assert np.isclose(fac.reduce(), seeded_f(0, err=0), atol=CLOSE_TOL)
Esempio n. 4
0
def test_ada_exp_factory_with_asympt(
    test_f: Callable[[float], float], avoid_log: bool
):
    """Test of the adaptive exponential extrapolator."""
    seeded_f = apply_seed_to_func(test_f, SEED)
    fac = AdaExpFactory(
        steps=3, scale_factor=2.0, asymptote=A, avoid_log=avoid_log
    )
    # Note: iterate calls next which calls reduce, so calling fac.iterate with
    # an AdaExpFactory sets the optimal parameters as well. Hence we check that
    # the opt_params are empty before AdaExpFactory.iterate is called.
    assert len(fac.opt_params) == 0
    fac.iterate(seeded_f)
    assert np.isclose(fac.reduce(), seeded_f(0, err=0), atol=CLOSE_TOL)

    # There are three parameters to fit for the (adaptive) exponential ansatz
    assert len(fac.opt_params) == 3