Esempio n. 1
0
def test_iteration_warnings():
    """Test that the correct warning is raised beyond the iteration limit."""
    fac = LinearFactory(X_VALS)
    with warns(
        ConvergenceWarning,
        match=r"Factory iteration loop stopped before convergence.",
    ):
        fac.iterate(lambda scale_factor: 1.0, max_iterations=3)
Esempio n. 2
0
def test_linear_extr():
    """Tests extrapolation with a LinearFactory."""
    seeded_f = apply_seed_to_func(f_lin, SEED)
    fac = LinearFactory(X_VALS)
    assert not fac._opt_params
    fac.run_classical(seeded_f)
    assert np.isclose(fac.reduce(), seeded_f(0, err=0), atol=CLOSE_TOL)
    assert np.allclose(fac._opt_params, [B, A], atol=CLOSE_TOL)
Esempio n. 3
0
def test_full_output_keyword():
    """Tests the full_output keyword in extrapolate method."""
    zlim = LinearFactory.extrapolate([1, 2], [1, 2])
    assert np.isclose(zlim, 0.0)
    zlim, opt_params = LinearFactory.extrapolate(
        [1, 2], [1, 2], full_output=True
    )
    assert len(opt_params) == 2
    assert np.isclose(zlim, 0.0)
    assert np.isclose(0.0, opt_params[1])
    assert np.isclose(1.0, opt_params[0])
Esempio n. 4
0
def test_equal_simple():
    fac = LinearFactory(scale_factors=[1, 2, 3])
    assert fac != 1

    copied_fac = copy(fac)
    assert copied_fac == fac
    copied_fac._already_reduced = True
    assert copied_fac != fac

    fac._instack = [{"scale_factor": 1, "shots": 100}]
    copied_fac = deepcopy(fac)
    assert copied_fac == fac
    copied_fac._instack[0].update({"shots": 101})
    assert copied_fac != fac
Esempio n. 5
0
def test_full_output_keyword():
    """Tests the full_output keyword in extrapolate method."""
    zne_limit = LinearFactory.extrapolate([1, 2], [1, 2])
    assert np.isclose(zne_limit, 0.0)
    (
        zne_limit,
        zne_std,
        opt_params,
        params_cov,
        zne_curve,
    ) = LinearFactory.extrapolate([1, 2], [1, 2], full_output=True)

    assert len(opt_params) == 2
    assert np.isclose(zne_limit, 0.0)
    assert np.isclose(0.0, opt_params[1])
    assert np.isclose(1.0, opt_params[0])
    assert zne_std is None
    assert params_cov is None
    assert np.isclose(zne_curve(0), 0.0)
    assert np.isclose(zne_curve(2), 2.0)
Esempio n. 6
0
def test_linear_extr():
    """Tests extrapolation with a LinearFactory."""
    seeded_f = apply_seed_to_func(f_lin, SEED)
    fac = LinearFactory(X_VALS)
    assert not fac._opt_params
    fac.run_classical(seeded_f)
    zne_value = fac.reduce()
    assert np.isclose(zne_value, seeded_f(0, err=0), atol=CLOSE_TOL)
    assert np.allclose(fac._opt_params, [B, A], atol=CLOSE_TOL)
    exp_vals = fac.get_expectation_values()
    assert np.isclose(fac.extrapolate(X_VALS, exp_vals), zne_value)
    assert np.isclose(
        fac.extrapolate(X_VALS, exp_vals, full_output=True)[0], zne_value,
    )
Esempio n. 7
0
def test_get_methods_of_factories():
    """Tests the get methods of a factory"""
    x_values = [0, 0, 1]
    y_values = [-1, 1, 0]
    fac = LinearFactory(x_values)
    fac._instack = [
        {"scale_factor": 0},
        {"scale_factor": 0},
        {"scale_factor": 1},
    ]
    fac._outstack = y_values
    zne_reduce = fac.reduce()

    assert np.allclose(fac.get_expectation_values(), y_values)
    assert np.allclose(fac.get_extrapolation_curve()(0.0), zne_reduce)
    assert np.allclose(fac.get_optimal_parameters(), [0.0, 0.0])
    assert np.allclose(
        fac.get_parameters_covariance(), [[3.0, -1.0], [-1.0, 1.0]]
    )
    assert np.allclose(fac.get_scale_factors(), x_values)
    assert np.allclose(fac.get_zero_noise_limit(), zne_reduce)
    assert np.allclose(fac.get_zero_noise_limit_error(), 1.0)
Esempio n. 8
0
def test_push_after_already_reduced_warning():
    """Tests a warning is raised if new data is pushed in a factory
    which was already reduced."""
    fac = LinearFactory([1, 2])
    fac.push({"scale_factor": 1.0}, 1.0)
    fac.push({"scale_factor": 2.0}, 2.0)
    fac.reduce()
    with warns(
        ExtrapolationWarning,
        match=r"You are pushing new data into a factory object",
    ):
        fac.push({"scale_factor": 3.0}, 3.0)
    # Assert no warning is raised when .reset() is used
    fac.reset()
    fac.push({"scale_factor": 1.0}, 2.0)
    fac.push({"scale_factor": 2.0}, 1.0)
    assert np.isclose(3.0, fac.reduce())
Esempio n. 9
0
    """Test error handling for a failing fit."""
    fac = ExpFactory(X_VALS, asymptote=None)
    fac._instack = [{"scale_factor": x} for x in X_VALS]
    fac._outstack = [1.0, 2.0, 1.0, 2.0, 1.0]
    with raises(
        ExtrapolationError, match=r"The extrapolation fit failed to converge."
    ):
        fac.reduce()
    # test also the static "extrapolate" method.
    with raises(
        ExtrapolationError, match=r"The extrapolation fit failed to converge."
    ):
        ExpFactory.extrapolate(X_VALS, [1.0, 2.0, 1.0, 2.0, 1.0])


@mark.parametrize("fac", [LinearFactory([1, 1, 1]), ExpFactory([1, 1, 1])])
def test_failing_fit_warnings(fac):
    """Test that the correct warning is raised for an ill-conditioned fit."""
    fac._instack = [{"scale_factor": 1.0} for _ in range(4)]
    fac._outstack = [1, 1, 1, 1]
    with warns(
        ExtrapolationWarning,
        match=r"The extrapolation fit may be ill-conditioned.",
    ):
        fac.reduce()
    # test also the static "extrapolate" method.
    with warns(
        ExtrapolationWarning,
        match=r"The extrapolation fit may be ill-conditioned.",
    ):
        fac.extrapolate([1, 1, 1, 1], [1.0, 1.0, 1.0, 1.0])
)
from mitiq.benchmarks.utils import noisy_simulation
from mitiq.zne import mitigate_executor

SCALE_FUNCTIONS = [
    fold_gates_at_random,
    fold_gates_from_left,
    fold_gates_from_right,
    fold_global,
]

FACTORIES = [
    AdaExpFactory(steps=3, scale_factor=1.5, asymptote=0.25),
    ExpFactory([1.0, 1.4, 2.1], asymptote=0.25),
    RichardsonFactory([1.0, 1.4, 2.1]),
    LinearFactory([1.0, 1.6]),
    PolyFactory([1.0, 1.4, 2.1], order=2),
]


def test_rb_circuits():
    depths = range(2, 10, 2)

    # test single qubit RB
    for trials in [2, 3]:
        circuits = rb_circuits(n_qubits=1, num_cliffords=depths, trials=trials)
        for qc in circuits:
            # we check the ground state population to ignore any global phase
            wvf = qc.final_wavefunction()
            zero_prob = abs(wvf[0]**2)
            assert np.isclose(zero_prob, 1)
Esempio n. 11
0
def test_less_than_two_scale_factors_error():
    """Test less than 2 scale_factors."""
    with raises(ValueError, match=r"At least 2 scale factors are necessary"):
        _ = LinearFactory([1])