Esempio n. 1
0
    agent_mtl = NPGFTW(e,
                       policy_mtl,
                       baseline_mtl,
                       normalized_step_size=1,
                       seed=SEED,
                       save_logs=True,
                       new_col_mode='max_k')

    for task_id in range(num_tasks):
        ts = timer.time()
        train_agent(job_name=job_name_lpgftw_seed,
                    agent=agent_mtl,
                    seed=SEED,
                    niter=50,
                    gamma=0.995,
                    gae_lambda=0.97,
                    num_cpu=num_cpu,
                    sample_mode='trajectories',
                    num_traj=10,
                    save_freq=5,
                    evaluation_rollouts=0,
                    task_id=task_id)
        agent_mtl.add_approximate_cost(N=10, task_id=task_id, num_cpu=num_cpu)
        iterdir = job_name_lpgftw_seed + '/iterations/task_{}/'.format(task_id)
        os.makedirs(iterdir, exist_ok=True)
        policy_file = open(iterdir + 'policy_updated.pickle', 'wb')
        pickle.dump(agent_mtl.policy, policy_file)
        policy_file.close()

        print("time taken for linear policy training = %f" %
              (timer.time() - ts))
Esempio n. 2
0
def single_process(job):
    job_start_time = timer.time()

    # Allow process to parallelize things internally
    curr_proc = mp.current_process()
    curr_proc.daemon = False

    os.chdir(cwd)
    dirpath = os.path.join(job['save_dir'], job['job_name'])
    os.makedirs(dirpath, exist_ok=True)

    # start job
    os.chdir(cwd)
    job_start_time = timer.time()
    print('Started New Job : ', job['job_name'], '=======================')
    print('Job specifications : \n', job)

    # Make Env
    e = GymEnv(job['env_name'])

    # Make baseline
    baseline = MLPBaseline(e.spec)

    # save job details
    job['horizon'] = e.horizon
    job['ctrl_timestep'] = e.env.env.dt
    job['sim_timestep'] = e.env.env.model.opt.timestep
    # job['sim_skip'] = e.env.env.skip
    job_data_file = open(dirpath + '/job_data.txt', 'w')
    pprint.pprint(job, stream=job_data_file)

    job_data_file.close()

    # Make policy (???vik: sizes are hard coded)
    if 'init_policy' in job:
        policy = MLP(e.spec,
                     init_log_std=job['init_std'],
                     hidden_sizes=(32, 32),
                     seed=job['seed'])
        loaded_policy = pickle.load(open(job['init_policy'], 'rb'))
        loaded_params = loaded_policy.get_param_values()
        print('log std values in loaded policy = ')
        print(params[-policy.m:])
        # NOTE: if the log std is too small
        # (say <-2.0, it is problem dependent and intuition should be used)
        # then we need to bump it up so that it explores
        # params[-policy.m:] += 1.0
        policy.set_param_values(loaded_params)
        del job['init_policy']

    else:
        policy = MLP(e.spec,
                     init_log_std=job['init_std'],
                     hidden_sizes=(32, 32),
                     seed=job['seed'])
    # Agent
    agent = NPG(e, policy, baseline, seed=job['seed'], \
        normalized_step_size=job['normalized_step_size'], \
        save_logs=job['save_logs'], FIM_invert_args=job['FIM_invert_args'])

    # Train Agent
    train_agent(
        job_name=dirpath,
        agent=agent,
        seed=job['seed'],
        niter=job['niter'],
        gamma=job['gamma'],
        gae_lambda=job['gae_lambda'],
        num_cpu=job['num_cpu'],
        sample_mode=job['sample_mode'],
        num_traj=job['num_traj'],
        evaluation_rollouts=job['evaluation_rollouts'],
        save_freq=job['save_freq'],
        plot_keys={'stoc_pol_mean', 'stoc_pol_std'},
    )

    total_job_time = timer.time() - job_start_time
    print('Job', job['job_name'],
          'took %f seconds ==============' % total_job_time)
    return total_job_time
Esempio n. 3
0
SEED = 500

e = GymEnv('Walker2d-v2')
policy = LinearPolicy(e.spec, seed=SEED)
baseline = MLPBaseline(e.spec,
                       reg_coef=1e-3,
                       batch_size=64,
                       epochs=2,
                       learn_rate=1e-3)
agent = NPG(e,
            policy,
            baseline,
            normalized_step_size=0.1,
            seed=SEED,
            save_logs=True)

ts = timer.time()
train_agent(job_name='walker_nominal',
            agent=agent,
            seed=SEED,
            niter=500,
            gamma=0.995,
            gae_lambda=0.97,
            num_cpu=4,
            sample_mode='trajectories',
            num_traj=50,
            save_freq=5,
            evaluation_rollouts=5)
print("time taken for linear policy training = %f" % (timer.time() - ts))
Esempio n. 4
0
import time as timer
SEED = 500

e = GymEnv('mjrl_point_mass-v0')
policy = MLP(e.spec, hidden_sizes=(32, 32), seed=SEED)
baseline = QuadraticBaseline(e.spec)
agent = NPG(e,
            policy,
            baseline,
            normalized_step_size=0.2,
            seed=SEED,
            save_logs=True)

ts = timer.time()
train_agent(job_name='vis_exp',
            agent=agent,
            seed=SEED,
            niter=30,
            gamma=0.95,
            gae_lambda=0.97,
            num_cpu=1,
            sample_mode='trajectories',
            num_traj=100,
            save_freq=5,
            evaluation_rollouts=None)
print("time taken = %f" % (timer.time() - ts))
e.visualize_policy(policy,
                   num_episodes=5,
                   horizon=e.horizon,
                   mode='evaluation')
Esempio n. 5
0
import argparse
import time as timer

SEED = 500
#
e = GymEnv("half-cheetah-joint-v0")
policy = MLP(e.spec, hidden_sizes=(32, 32), seed=SEED)
baseline = MLPBaseline(e.spec,
                       reg_coef=1e-3,
                       batch_size=64,
                       epochs=2,
                       learn_rate=1e-3)
agent = PPO(e, policy, baseline, save_logs=True)

print("========================================")
print("Starting policy learning")
print("========================================")

ts = timer.time()
train_agent(job_name='beta_test',
            agent=agent,
            seed=SEED,
            niter=2000,
            gamma=0.995,
            gae_lambda=0.97,
            num_cpu=5,
            sample_mode='trajectories',
            num_traj=10,
            save_freq=50,
            evaluation_rollouts=5)
print("time taken = %f" % (timer.time() - ts))
Esempio n. 6
0
def single_process(job):
    job_start_time = timer.time()

    # Allow process to parallelize things internally
    curr_proc = mp.current_process()
    curr_proc.daemon = False

    # Create a directory for the job results.
    job_dir = os.path.join(job['output_dir'])
    if not os.path.isdir(job_dir):
        os.mkdir(job_dir)

    # start job
    job_start_time = timer.time()
    print('Started New Job : ', job['job_name'], '=======================')
    print('Job specifications : \n', job)

    # Make Env
    env_name = job['env_name']
    # adept_envs.global_config.set_config(env_name, {
    #     'robot_params': job['robot'],
    #     **job.get('env_params', {}),
    # })
    e = GymEnv(env_name)

    # Make baseline
    baseline = MLPBaseline(e.spec)

    # save job details
    job['horizon'] = e.horizon
    job['ctrl_timestep'] = e.env.env.dt
    job['sim_timestep'] = e.env.env.model.opt.timestep
    # job['sim_skip'] = e.env.env.skip

    with open(os.path.join(job_dir, 'job_data.txt'), 'w') as job_data_file:
        pprint.pprint(job, stream=job_data_file)

    if 'init_policy' in job:
        policy = MLP(e.spec, init_log_std=job['init_std'], hidden_sizes=(32,32), seed=job['seed'])
        loaded_policy = pickle.load(open(job['init_policy'], 'rb'))
        loaded_params = loaded_policy.get_param_values()
        print("log std values in loaded policy = ")
        print(loaded_params[-policy.m:])
        # NOTE: if the log std is too small 
        # (say <-2.0, it is problem dependent and intuition should be used)
        # then we need to bump it up so that it explores
        loaded_params[-policy.m:] += job['init_std']
        policy.set_param_values(loaded_params)
        del job['init_policy']

    else:
        policy = MLP(
            e.spec,
            init_log_std=job['init_std'],
            hidden_sizes=job['hidden_sizes'],
            # hidden_sizes=(32, 32),
            seed=job['seed'])

    # Agent
    agent = NPG(
        e,
        policy,
        baseline,
        seed=job['seed'],
        normalized_step_size=job['normalized_step_size'],
        save_logs=job['save_logs'],
        FIM_invert_args=job['FIM_invert_args'])

    # Train Agent
    train_agent(
        job_name=job['job_name'],
        agent=agent,
        # save_dir=job_dir,
        seed=job['seed'],
        niter=job['niter'],
        gamma=job['gamma'],
        gae_lambda=job['gae_lambda'],
        num_cpu=job['num_cpu'],
        sample_mode=job['sample_mode'],
        num_traj=job.get('num_traj'),
        num_samples=job.get('num_samples'),
        evaluation_rollouts=job['evaluation_rollouts'],
        save_freq=job['save_freq'],
        plot_keys={'stoc_pol_mean', 'stoc_pol_std'},
    )

    total_job_time = timer.time() - job_start_time
    print('Job', job['job_name'],
          'took %f seconds ==============' % total_job_time)
    return total_job_time
Esempio n. 7
0
# RL Loop
# ===============================================================================

rl_agent = DAPG(e,
                policy,
                baseline,
                demo_paths,
                normalized_step_size=job_data['rl_step_size'],
                lam_0=job_data['lam_0'],
                lam_1=job_data['lam_1'],
                seed=job_data['seed'],
                save_logs=True)

print("========================================")
print("Starting reinforcement learning phase")
print("========================================")

ts = timer.time()
train_agent(job_name=JOB_DIR,
            agent=rl_agent,
            seed=job_data['seed'],
            niter=job_data['rl_num_iter'],
            gamma=job_data['rl_gamma'],
            gae_lambda=job_data['rl_gae'],
            num_cpu=job_data['num_cpu'],
            sample_mode='trajectories',
            num_traj=job_data['rl_num_traj'],
            save_freq=job_data['save_freq'],
            evaluation_rollouts=job_data['eval_rollouts'])
print("time taken = %f" % (timer.time() - ts))
Esempio n. 8
0
SEED = 500

e = GymEnv('mjrl_swimmer-v0')
policy = MLP(e.spec, hidden_sizes=(32, 32), seed=SEED)
baseline = MLPBaseline(e.spec,
                       reg_coef=1e-3,
                       batch_size=64,
                       epochs=5,
                       learn_rate=1e-3)
agent = NPG(e,
            policy,
            baseline,
            normalized_step_size=0.1,
            seed=SEED,
            save_logs=True)

ts = timer.time()
train_agent(
    job_name='swimmer_exp1',
    agent=agent,
    seed=SEED,
    niter=50,
    gamma=0.995,
    gae_lambda=0.97,
    num_cpu=1,
    sample_mode='trajectories',
    num_traj=10,  # samples = 10*500 = 5000
    save_freq=5,
    evaluation_rollouts=5)
print("time taken = %f" % (timer.time() - ts))
Esempio n. 9
0
print("========================================")
print("Finetuning with DAPG")
baseline = MLPBaseline(e.spec,
                       reg_coef=1e-3,
                       batch_size=64,
                       epochs=2,
                       learn_rate=1e-3)
agent = DAPG(e,
             policy,
             baseline,
             demo_paths=demo_paths,
             normalized_step_size=0.1,
             seed=SEED,
             lam_0=1e-2,
             lam_1=0.99,
             save_logs=True)

ts = timer.time()
train_agent(job_name='relocate_demo_init_dapg',
            agent=agent,
            seed=SEED,
            niter=100,
            gamma=0.995,
            gae_lambda=0.97,
            num_cpu=5,
            sample_mode='trajectories',
            num_traj=200,
            save_freq=25,
            evaluation_rollouts=20)
print("time taken = %f" % (timer.time() - ts))
Esempio n. 10
0
def launch_job(tag, variant):

    print(len(variant))
    seed, env, algo, optim, curv_type, lr, batch_size, cg_iters, cg_residual_tol, cg_prev_init_coef, \
        cg_precondition_empirical, cg_precondition_regu_coef, cg_precondition_exp,  \
        shrinkage_method, lanczos_amortization, lanczos_iters, approx_adaptive, betas, use_nn_policy, gn_vfn_opt, total_samples = variant
    beta1, beta2 = betas

    iters = int(total_samples / batch_size)

    # NN policy
    # ==================================
    e = GymEnv(env)
    if use_nn_policy:
        policy = MLP(e.spec, hidden_sizes=(64, ), seed=seed)
    else:
        policy = LinearPolicy(e.spec, seed=seed)
    vfn_batch_size = 256 if gn_vfn_opt else 64
    vfn_epochs = 2 if gn_vfn_opt else 2
    # baseline = MLPBaseline(e.spec, reg_coef=1e-3, batch_size=64, epochs=2, learn_rate=1e-3)
    baseline = MLPBaseline(e.spec,
                           reg_coef=1e-3,
                           batch_size=vfn_batch_size,
                           epochs=2,
                           learn_rate=1e-3,
                           use_gauss_newton=gn_vfn_opt)
    # agent = NPG(e, policy, baseline, normalized_step_size=0.005, seed=SEED, save_logs=True)

    common_kwargs = dict(lr=lr,
                         curv_type=curv_type,
                         cg_iters=cg_iters,
                         cg_residual_tol=cg_residual_tol,
                         cg_prev_init_coef=cg_prev_init_coef,
                         cg_precondition_empirical=cg_precondition_empirical,
                         cg_precondition_regu_coef=cg_precondition_regu_coef,
                         cg_precondition_exp=cg_precondition_exp,
                         shrinkage_method=shrinkage_method,
                         lanczos_amortization=lanczos_amortization,
                         lanczos_iters=lanczos_iters,
                         batch_size=batch_size)

    if optim == 'ngd':
        optimizer = fisher_optim.NGD(policy.trainable_params, **common_kwargs)
    elif optim == 'natural_adam':
        optimizer = fisher_optim.NaturalAdam(
            policy.trainable_params,
            **common_kwargs,
            betas=(beta1, beta2),
            assume_locally_linear=approx_adaptive)
    elif optim == 'natural_adagrad':
        optimizer = fisher_optim.NaturalAdagrad(
            policy.trainable_params,
            **common_kwargs,
            betas=(beta1, beta2),
            assume_locally_linear=approx_adaptive)
    elif optim == 'natural_amsgrad':
        optimizer = fisher_optim.NaturalAmsgrad(
            policy.trainable_params,
            **common_kwargs,
            betas=(beta1, beta2),
            assume_locally_linear=approx_adaptive)

    if algo == 'trpo':
        from mjrl.algos.trpo_delta import TRPO
        agent = TRPO(e, policy, baseline, optimizer, seed=seed, save_logs=True)
        # agent = TRPO(e, policy, baseline, seed=seed, save_logs=True)
    else:
        from mjrl.algos.npg_cg_delta import NPG
        agent = NPG(e, policy, baseline, optimizer, seed=seed, save_logs=True)

    save_dir = build_log_dir(tag, variant)
    try:
        os.makedirs(save_dir)
    except:
        pass

    # print ("Iters:", iters, ", num_traj: ", str(batch_size//1000))
    train_agent(job_name=save_dir,
                agent=agent,
                seed=seed,
                niter=iters,
                gamma=0.995,
                gae_lambda=0.97,
                num_cpu=1,
                sample_mode='samples',
                num_samples=batch_size,
                save_freq=5,
                evaluation_rollouts=5,
                verbose=False)  #True)
def train(cfg, run_no, multiple_runs, seed):
    # ===============================================================================
    # Train Loop
    # ===============================================================================

    gpus_available = setup_gpus()
    env_name, job_name = parse_task(cfg)
    env = GymEnv(env_name, **cfg['env_kwargs'])
    policy = MLP(env.spec, hidden_sizes=tuple(cfg['policy_size']), seed=seed)
    baseline = MLPBaseline(env.spec,
                           reg_coef=1e-3,
                           batch_size=cfg['value_function']['batch_size'],
                           epochs=cfg['value_function']['epochs'],
                           learn_rate=cfg['value_function']['lr'],
                           use_gpu=False)

    # Get demonstration data if necessary and behavior clone
    print("========================================")
    print("Collecting expert demonstrations")
    print("========================================")
    demo_filename = cfg['demo_file']
    if cfg['demo_file'] != None:
        demo_paths = pickle.load(open(demo_filename, 'rb'))
    else:
        demo_paths = None

    if 'demo_file' in cfg['BC'] and cfg['BC']['demo_file'] != 'default':
        bc_demo_file_path = cfg['BC']['demo_file']
        if cfg['train']['use_timestamp']:
            bc_demo_file_path = bc_demo_file_path.replace(
                'v0', 'v0_timestamp_inserted')
        bc_demo_paths = pickle.load(open(bc_demo_file_path, 'rb'))
    else:
        bc_demo_paths = demo_paths
    if 'num_demo' in cfg and cfg['num_demo']:
        demo_paths = demo_paths[:cfg['num_demo']]
    if cfg['algorithm'] == 'DAPG_based_IRL':
        if 'get_paths_for_initialisation' in cfg['based_IRL']:
            if cfg['based_IRL']['get_paths_for_initialisation']:
                bc_demo_paths = add_dumped_paths_for_BC(demo_paths, cfg)

    ts = timer.time()
    if bc_demo_paths is not None and cfg['BC']['epochs'] > 0:
        print("========================================")
        print("Running BC with expert demonstrations")
        print("========================================")
        bc_agent = BC(bc_demo_paths[:25],
                      policy=policy,
                      epochs=cfg['BC']['epochs'],
                      batch_size=cfg['BC']['batch_size'],
                      lr=cfg['BC']['lr'],
                      loss_type='MSE',
                      set_transforms=True)

        bc_agent.train()
        print("========================================")
        print("BC training complete !!!")
        print("time taken = %f" % (timer.time() - ts))
        print("========================================")

    if cfg['algorithm'] == 'IRL' or cfg['algorithm'] == 'DAPG_based_IRL':
        IRL_cfg = cfg
        if cfg['algorithm'] == 'DAPG_based_IRL':
            IRL_job_cfg_path = os.path.join("Runs",
                                            cfg['based_IRL']['IRL_job'],
                                            "config.yaml")
            IRL_cfg = yamlreader.yaml_load(IRL_job_cfg_path)

        irl_model = get_irl_model(env, demo_paths, IRL_cfg, seed)
        if cfg['algorithm'] == 'DAPG_based_IRL':
            full_irl_model_checkpoint_path = os.path.join(
                'Runs', cfg['based_IRL']['IRL_job'])
            if cfg['based_IRL']['IRL_run_no'] is not None:
                full_irl_model_checkpoint_path = os.path.join(
                    full_irl_model_checkpoint_path,
                    'run_' + str(cfg['based_IRL']['IRL_run_no']))
            if cfg['based_IRL']['IRL_step'] is not None:
                irl_model.load_iteration(
                    path=full_irl_model_checkpoint_path,
                    iteration=cfg['based_IRL']['IRL_step'])
            else:
                irl_model.load_last(path=full_irl_model_checkpoint_path)
            irl_model.eval(
                demo_paths
            )  # required to load model completely from the given path before changin to different path during training

    if cfg['eval_rollouts'] > 0:
        score = env.evaluate_policy(policy,
                                    num_episodes=cfg['eval_rollouts'],
                                    mean_action=True)
        print("Score with behavior cloning = %f" % score[0][0])

    if not cfg['use_DAPG']:
        # We throw away the demo data when training from scratch or fine-tuning with RL without explicit augmentation
        demo_paths = None

    # ===============================================================================
    # RL Loop
    # ===============================================================================

    irl_kwargs = None
    if cfg['algorithm'] == 'IRL' or cfg['algorithm'] == 'DAPG_based_IRL':
        if cfg['algorithm'] == 'DAPG_based_IRL' or cfg['IRL'][
                'generator_alg'] == 'DAPG':
            generator_algorithm = DAPG
            generator_args = dict(
                demo_paths=demo_paths,
                normalized_step_size=cfg['RL']['step_size'],
                seed=seed,
                lam_0=cfg['RL']['lam_0'],
                lam_1=cfg['RL']['lam_1'],
                save_logs=cfg['save_logs'],
                augmentation=cfg['train']['augmentation'],
                entropy_weight=cfg['train']['entropy_weight'])
        elif cfg['IRL']['generator_alg'] == 'PPO':
            generator_algorithm = PPO
            generator_args = dict(
                demo_paths=demo_paths,
                epochs=cfg['PPO']['epochs'],
                mb_size=cfg['PPO']['batch_size'],
                target_kl_dist=cfg['PPO']['target_kl_dist'],
                seed=seed,
                lam_0=cfg['RL']['lam_0'],
                lam_1=cfg['RL']['lam_1'],
                save_logs=cfg['save_logs'],
                clip_coef=cfg['PPO']['clip_coef'],
                learn_rate=cfg['PPO']['lr'],
                augmentation=cfg['train']['augmentation'],
                entropy_weight=cfg['train']['entropy_weight'])
        else:
            raise ValueError("Generator algorithm name",
                             cfg['IRL']['generator_alg'], "not supported")
        irl_class = irl_training_class(generator_algorithm)
        rl_agent = irl_class(
            env,
            policy,
            baseline,
            train_irl=cfg['algorithm'] != 'DAPG_based_IRL',
            discr_lr=IRL_cfg['IRL']['discr']['lr'],
            irl_batch_size=IRL_cfg['IRL']['discr']['batch_size'],
            lower_lr_on_main_loop_percentage=IRL_cfg['IRL']['discr']
            ['lower_lr_on_main_loop_percentage'],
            irl_model=irl_model,
            **generator_args)
        irl_kwargs = dict(policy=dict(
            min_updates=1,
            max_updates=IRL_cfg['IRL']['max_gen_updates']
            if cfg['algorithm'] != 'DAPG_based_IRL' else 0,
            steps_till_max=IRL_cfg['IRL']['steps_till_max_gen_updates']))
    elif cfg['algorithm'] == 'DAPG':
        rl_agent = DAPG(env,
                        policy,
                        baseline,
                        demo_paths=demo_paths,
                        normalized_step_size=cfg['RL']['step_size'],
                        lam_0=cfg['RL']['lam_0'],
                        lam_1=cfg['RL']['lam_1'],
                        seed=seed,
                        save_logs=cfg['save_logs'],
                        augmentation=cfg['train']['augmentation'],
                        entropy_weight=cfg['train']['entropy_weight'])
    elif cfg['algorithm'] == 'PPO':
        rl_agent = PPO(env,
                       policy,
                       baseline,
                       demo_paths=demo_paths,
                       epochs=cfg['PPO']['epochs'],
                       mb_size=cfg['PPO']['batch_size'],
                       target_kl_dist=cfg['PPO']['target_kl_dist'],
                       seed=seed,
                       lam_0=cfg['RL']['lam_0'],
                       lam_1=cfg['RL']['lam_1'],
                       save_logs=cfg['save_logs'],
                       clip_coef=cfg['PPO']['clip_coef'],
                       learn_rate=cfg['PPO']['lr'],
                       augmentation=cfg['train']['augmentation'],
                       entropy_weight=cfg['train']['entropy_weight'])
    else:
        raise ValueError("Algorithm name", cfg['algorithm'], "not supported")

    # get IRL model kwargs if doing DAPG based on IRL
    env_kwargs = cfg['env_kwargs']
    if cfg['algorithm'] == 'DAPG_based_IRL':
        rl_agent.irl_model = irl_model

    # dump YAML config file
    job_path = os.path.join("Runs", job_name)
    if not os.path.isdir(job_path):
        os.makedirs(job_path)
    with open(os.path.join(job_path, 'config.yaml'), 'w') as f:
        dump(cfg, f)

    print("========================================")
    print("Starting reinforcement learning phase")
    print("========================================")

    ts = timer.time()
    train_agent(
        job_name=job_name,
        agent=rl_agent,
        seed=seed,
        niter=cfg['train']['steps'],
        gamma=cfg['train']['gamma'],
        gae_lambda=cfg['train']['gae_lambda'],
        num_cpu=cfg['num_cpu'],
        sample_mode='trajectories',
        num_traj=cfg['train']['num_traj'],
        save_freq=cfg['train']['save_freq'],
        evaluation_rollouts=cfg['eval_rollouts'],
        should_fresh_start=bool(cfg['IRL']['initialization_job'])
        if cfg['algorithm'] == 'IRL' else False,
        irl_kwargs=irl_kwargs,
        temperature_max=cfg['IRL']['temperature_max']
        if cfg['algorithm'] == 'IRL' else 0,
        temperature_min=cfg['IRL']['temperature_min']
        if cfg['algorithm'] == 'IRL' else 0,
        plot_keys=cfg['plot_keys'],
        run_no=run_no if multiple_runs else None,
        env_kwargs=env_kwargs,
        fixed_evaluation_init_states=cfg['fixed_evaluation_init_states'])
    print("time taken = %f" % (timer.time() - ts))
Esempio n. 12
0
e = GymEnv('mjrl_point_mass-v0')
policy = MLP(e.spec, hidden_sizes=(32, 32), seed=SEED)
baseline = MLPBaseline(e.spec,
                       reg_coef=1e-3,
                       batch_size=64,
                       epochs=10,
                       learn_rate=1e-3)
agent = NPG(e,
            policy,
            baseline,
            normalized_step_size=0.05,
            seed=SEED,
            save_logs=True)

ts = timer.time()
train_agent(
    job_name='point_mass_exp1',
    agent=agent,
    seed=SEED,
    niter=50,
    gamma=0.95,
    gae_lambda=0.97,
    num_cpu=1,
    sample_mode='trajectories',
    num_traj=40,  # samples = 40*25 = 1000
    save_freq=5,
    evaluation_rollouts=None,
    plot_keys=['stoc_pol_mean', 'running_score'])
print("time taken = %f" % (timer.time() - ts))
Esempio n. 13
0
from mjrl.algos.npg_cg import NPG
from mjrl.utils.train_agent import train_agent
import mjrl.envs
import time as timer
SEED = 500

e = GymEnv('mjrl_point_mass-v0')
policy = MLP(e.spec, hidden_sizes=(32, 32), seed=SEED)
baseline = QuadraticBaseline(e.spec)
agent = NPG(e,
            policy,
            baseline,
            normalized_step_size=0.1,
            seed=SEED,
            save_logs=True)

ts = timer.time()
train_agent(
    job_name='point_mass_exp1',
    agent=agent,
    seed=SEED,
    niter=50,
    gamma=0.95,
    gae_lambda=0.97,
    num_cpu=1,
    sample_mode='trajectories',
    num_traj=40,  # samples = 40*25 = 1000
    save_freq=5,
    evaluation_rollouts=10)
print("time taken = %f" % (timer.time() - ts))
Esempio n. 14
0
def experiment(variant):
    """
    This is a job script for running NPG/DAPG on hand tasks and other gym envs.
    Note that DAPG generalizes PG and BC init + PG finetuning.
    With appropriate settings of parameters, we can recover the full family.
    """
    import mj_envs

    job_data = default_job_data.copy()
    job_data.update(variant)

    env_params = ENV_PARAMS[variant['env_class']]
    job_data.update(env_params)

    assert 'algorithm' in job_data.keys()
    assert any([job_data['algorithm'] == a for a in ['NPG', 'BCRL', 'DAPG']])

    JOB_DIR = logger.get_snapshot_dir()

    # ===============================================================================
    # Train Loop
    # ===============================================================================

    seed = int(job_data['seedid'])

    e = GymEnv(job_data['env_id'])
    policy = MLP(e.spec, hidden_sizes=job_data['policy_size'], seed=seed)
    baseline = MLPBaseline(e.spec,
                           reg_coef=1e-3,
                           batch_size=job_data['vf_batch_size'],
                           epochs=job_data['vf_epochs'],
                           learn_rate=job_data['vf_learn_rate'])

    # Get demonstration data if necessary and behavior clone
    if job_data['algorithm'] != 'NPG':
        print("========================================")
        print("Collecting expert demonstrations")
        print("========================================")
        demo_paths = load_local_or_remote_file(job_data['demo_file'], 'rb')

        bc_agent = BC(demo_paths,
                      policy=policy,
                      epochs=job_data['bc_epochs'],
                      batch_size=job_data['bc_batch_size'],
                      lr=job_data['bc_learn_rate'],
                      loss_type='MSE',
                      set_transforms=False)
        in_shift, in_scale, out_shift, out_scale = bc_agent.compute_transformations(
        )
        bc_agent.set_transformations(in_shift, in_scale, out_shift, out_scale)
        bc_agent.set_variance_with_data(out_scale)

        ts = timer.time()
        print("========================================")
        print("Running BC with expert demonstrations")
        print("========================================")
        bc_agent.train()
        print("========================================")
        print("BC training complete !!!")
        print("time taken = %f" % (timer.time() - ts))
        print("========================================")

        if job_data['eval_rollouts'] >= 1:
            score = e.evaluate_policy(policy,
                                      num_episodes=job_data['eval_rollouts'],
                                      mean_action=True)
            print("Score with behavior cloning = %f" % score[0][0])

    if job_data['algorithm'] != 'DAPG':
        # We throw away the demo data when training from scratch or fine-tuning with RL without explicit augmentation
        demo_paths = None

    # ===============================================================================
    # RL Loop
    # ===============================================================================

    rl_agent = DAPG(e,
                    policy,
                    baseline,
                    demo_paths,
                    normalized_step_size=job_data['rl_step_size'],
                    lam_0=job_data['lam_0'],
                    lam_1=job_data['lam_1'],
                    seed=seed,
                    save_logs=True)

    print("========================================")
    print("Starting reinforcement learning phase")
    print("========================================")

    ts = timer.time()
    train_agent(job_name=JOB_DIR,
                agent=rl_agent,
                seed=seed,
                niter=job_data['rl_num_iter'],
                gamma=job_data['rl_gamma'],
                gae_lambda=job_data['rl_gae'],
                num_cpu=job_data['num_cpu'],
                sample_mode='trajectories',
                num_traj=job_data['rl_num_traj'],
                save_freq=job_data['save_freq'],
                evaluation_rollouts=job_data['eval_rollouts'])
    print("time taken = %f" % (timer.time() - ts))