def get_Bxy_vecRendering_format_lookup(shot, fix=False, num_probes=16):
    """Basically get_data() but returns data in a form that is compatible
       with the b-field animations found in anim_bfield_merging files


       Returns data, the calibrated, integrated magentic field data
       using lookup calibration.

    --KG 07/25/19
    """

    data = [[0] * 3 for i in range(num_probes)]
    # B25 = [[0] *num_probes for i in range(3)]

    magdata = hdr.getquikData(shot)
    timeB = magdata.time

    calibFile = 'calib-050119-4x4_lookup_final.txt'
    calibFile = os.path.join(os.getcwd() + "\\magcalib\\",
                             calibFile)  #change where caliv file is here
    calibFactor = np.loadtxt(calibFile)

    B25 = np.zeros([3, num_probes, len(timeB) - 1])

    for probe in range(num_probes):
        Bx_all = cumtrapz(
            magdata.unCalibData[0, probe, :] - mj.get_gaussian_moving_avg(
                timeB, magdata.unCalibData[0, probe, :], num_probes - 1),
            timeB)
        Bx = Bx_all * calibFactor[probe][0]

        By_all = cumtrapz(
            magdata.unCalibData[1, probe, :] - mj.get_gaussian_moving_avg(
                timeB, magdata.unCalibData[1, probe, :], num_probes - 1),
            timeB)
        By = By_all * calibFactor[probe][1]

        Bz_all = cumtrapz(
            magdata.unCalibData[2, probe, :] - mj.get_gaussian_moving_avg(
                timeB, magdata.unCalibData[2, probe, :], num_probes - 1),
            timeB)
        Bz = Bz_all * calibFactor[probe][2]

        B25[0, probe, :] = Bx
        B25[1, probe, :] = By
        B25[2, probe, :] = Bz

    if fix:
        B25[2, 9, :] = B25[2, 9, :] * 100
        B25[2, 11, :] = B25[2, 11, :] * 100
        B25[1, 12, :] = B25[1, 12, :] * 100

    Bmod25 = np.zeros([num_probes, len(timeB) - 1])
    for j in range(num_probes):
        Bmod25[j, :] = np.sqrt(B25[0, j, :]**2 + B25[1, j, :]**2 +
                               B25[2, j, :]**2)

    return (timeB, B25)
Esempio n. 2
0
def integrated_B(shot, num_probes=16, probe=3):
    """
       There are different way that I've seen the data
       integrated: this will plot the different ones, along with
       a variety of different moving averages

        --KG 06/13/19
        """

    # data = [[0] *3 for i in range(num_probes)]
    fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)

    data = hdr.getquikData(shot)
    btime = data.time
    Bz_nBT_15 = cumtrapz(
        data.unCalibData[2, probe, :] - mj.get_gaussian_moving_avg(
            data.time, data.unCalibData[2, probe, :], 15),
        data.time) * -1.103810335732411829e+02

    Bz_nBT_100 = cumtrapz(
        data.unCalibData[2, probe, :] - mj.get_gaussian_moving_avg(
            data.time, data.unCalibData[2, probe, :], 100),
        data.time) * -1.103810335732411829e+02

    Bz_nBT_500 = cumtrapz(
        data.unCalibData[2, probe, :] - mj.get_gaussian_moving_avg(
            data.time, data.unCalibData[2, probe, :], 500),
        data.time) * -1.103810335732411829e+02
    # num_probes = 1 #only plot the first probe
    # probe_locs = get_probeLocs_calib_setup(shot)
    # Bz=sp.signal.detrend(magdata.fullData[2,probe_num,:])
    # Bx=sp.signal.detrend(magdata.fullData[0,probe_num,:])
    # By=sp.signal.detrend(magdata.fullData[1,probe_num,:])

    # Bz=cumtrapz(data.unCalibData[2,1,:]-mj.get_gaussian_moving_avg(data.time, data.unCalibData[2,1,:], 1), data.time)
    Bz = sp.signal.detrend(cumtrapz(data.unCalibData[2, probe, :], data.time))
    btime = btime[:len(Bz)]
    ax1.plot(btime, Bz, label='Detrend, integrated')
    ax1.plot(btime, Bz_nBT_15, label='-moving avg, win = 15')
    ax1.plot(btime, Bz_nBT_100, label='-moving avg, win = 100')
    ax1.plot(btime, Bz_nBT_500, label='-moving avg, win = 500')
    ax1.legend()

    Bdot25 = np.zeros([3, 25, 8192])
    timeB = data.time[801:]
    Bdot25[0, 3, :] = data.Bdot[0, 3, :]
    Bdot25[1, 3, :] = data.Bdot[1, 3, :]
    Bdot25[2, 3, :] = data.Bdot[2, 3, :]
    bzero = pyl.detrend_linear(Bdot25[2, 3, 800:])
    bint = sp.integrate.cumtrapz(bzero, data.time[800:])
    ax2.plot(btime, Bz_nBT_15, label='-moving avg, win = 15')
    ax2.plot(btime, Bz_nBT_500, label='-moving avg, win = 500')
    ax2.plot(timeB, bint, label="detrend LINEAR and integrated time shifted")
    # ax2.set_title("Current")

    plt.legend()
    plt.show()
def get_data_slice(shot, t, num_probes=16):
    """Gets the data from the 4x4 probe setup AT A SPECIFIC SLICE OF TIME


       Returns data, the calibrated, integrated magentic field data

       Data has the dimensions of [probes][direction][time]
            - probes is the number of probes, from 0 to 15 typically
            - direction is the direction of the magnetic field
                - 0 is x-dir
                - 1 is y-dir
                - 2 is z-dir

       ie Bx of probe 5 (index starting from 0) can be found:

            Bx = data[5][0]

        Very time inefficent, so don't plan to use this often

        --KG 07/25/19
    """

    data = [[0] * 3 for i in range(num_probes)]
    magdata = hdr.getMagData(shot)

    calibFile = 'calib-050119-4x4_lookup_final.txt'
    calibFile = os.path.join(os.getcwd() + '\\magcalib\\',
                             calibFile)  #change where caliv file is here
    calibFactor = np.loadtxt(calibFile)

    for probe in range(num_probes):
        Bx_all = cumtrapz(
            magdata.unCalibData[0, probe, :] - mj.get_gaussian_moving_avg(
                magdata.time, magdata.unCalibData[0, probe, :],
                num_probes - 1), magdata.time)
        Bx = Bx_all[int(t)] * calibFactor[probe][0]

        By_all = cumtrapz(
            magdata.unCalibData[1, probe, :] - mj.get_gaussian_moving_avg(
                magdata.time, magdata.unCalibData[1, probe, :],
                num_probes - 1), magdata.time)
        By = By_all[int(t)] * calibFactor[probe][1]

        Bz_all = cumtrapz(
            magdata.unCalibData[2, probe, :] - mj.get_gaussian_moving_avg(
                magdata.time, magdata.unCalibData[2, probe, :],
                num_probes - 1), magdata.time)
        Bz = Bz_all[int(t)] * calibFactor[probe][2]

        data[probe] = [Bx, By, Bz]

    return data
def get_data(shot, num_probes=16):
    """Gets the data from the 4x4 probe setup at ALL TIMES

    Returns data, the calibrated, integrated magentic field data
    using lookup calibration.

    Data has the dimensions of [probes][direction]
        - probes is the number of probes, from 0 to 15 typically
        - direction is the direction of the magnetic field
            - 0 is x-dir
            - 1 is y-dir
            - 2 is z-dir

    ie Bx of probe 5 (index starting from 0) can be found:

        Bx = data[5][0]

    ASSUMES THE CALIBRATION FILE IS IN magcalib
    (feel free to change that tho)"""

    data = [[0] * 3 for i in range(num_probes)]
    magdata = hdr.getMagData(shot)

    calibFile = 'calib-050119-4x4_lookup_final.txt'
    calibFile = os.path.join(os.getcwd() + '\\magcalib\\',
                             calibFile)  #change where caliv file is here
    calibFactor = np.loadtxt(calibFile)

    for probe in range(num_probes):
        Bx_all = cumtrapz(
            magdata.unCalibData[0, probe, :] - mj.get_gaussian_moving_avg(
                magdata.time, magdata.unCalibData[0, probe, :],
                num_probes - 1), magdata.time)
        Bx = Bx_all * calibFactor[probe][0]

        By_all = cumtrapz(
            magdata.unCalibData[1, probe, :] - mj.get_gaussian_moving_avg(
                magdata.time, magdata.unCalibData[1, probe, :],
                num_probes - 1), magdata.time)
        By = By_all * calibFactor[probe][1]

        Bz_all = cumtrapz(
            magdata.unCalibData[2, probe, :] - mj.get_gaussian_moving_avg(
                magdata.time, magdata.unCalibData[2, probe, :],
                num_probes - 1), magdata.time)
        Bz = Bz_all * calibFactor[probe][2]

        data[probe] = [Bx, By, Bz]

    return magdata.time, data
Esempio n. 5
0
def get_v(magdata, probe, time):
    # from itertools import izip as zip, count # izip for maximum efficiency
    # print("here")
    i = mt.find_closest(magdata.time, time, False)
    # i = [i for i, j in enumerate(magdata.time) if j == time]
    # print(i)
    win_size = 25
    Vx = cumtrapz(magdata.unCalibData[0,probe,:]-mj.get_gaussian_moving_avg(magdata.time,
    magdata.unCalibData[0,probe,:], win_size), magdata.time)
    Vy = cumtrapz(magdata.unCalibData[1,probe,:]-mj.get_gaussian_moving_avg(magdata.time,
    magdata.unCalibData[1,probe,:], win_size), magdata.time)
    Vz = cumtrapz(magdata.unCalibData[2,probe,:]-mj.get_gaussian_moving_avg(magdata.time,
    magdata.unCalibData[2,probe,:], win_size), magdata.time)

    return Vx[i], Vy[i], Vz[i]
def getMagData(shot, t0=-1, tf=-1, num_probes=16):
    """The main function that should be used

       Gets the data from the 4x4 probe setup at ALL TIMES

       Returns Bx,By and Bz, the calibrated, integrated magentic field data
       using a matrix calibration

       Data has the dimensions of [probes][time]
            - probes is the number of probes, from 0 to 15 typically

       assumes the calibration file is stored in magcalib folder


        --KG 07/10/19"""

    magdata = hdr.getquikData(shot)
    timeB = magdata.time

    if t0 != -1 and tf != -1:
        #trim to desired time
        t_index, t = my.fix_bounds(np.array((t0, tf)), timeB)
        magdata = magdata[:, :, t0:tf]

    calibFile = 'calib-050119-4x4_matrix.txt'
    calibFile = os.path.join(os.getcwd() + '\\magcalib\\',
                             calibFile)  #change where caliv file is here
    calibFactor = np.loadtxt(calibFile)

    B = np.zeros([3, num_probes, len(timeB) - 1])

    win_size = 25

    for probe in range(num_probes):
        for i in range(3):
            B_vec[i, probe, :] = cumtrapz(
                magdata.unCalibData[i, probe, :] - mj.get_gaussian_moving_avg(
                    timeB, magdata.unCalibData[i, probe, :], win_size), timeB)

    for t in range(len(timeB) - 1):
        for probe in range(num_probes):
            C = np.reshape(calibFactor[probe], (3, 3))
            #put into 3 x1 matric
            V = [[B_vec[0, probe, t]], [B_vec[1, probe, t]],
                 [B_vec[2, probe, t]]]

            B_data = np.dot(C, V)
            B[0, probe, t], B[1, probe, t], B[2, probe, t] = B_data

    return B
Esempio n. 7
0
def plot_every_single_calib_chan(shot,
                                 dir,
                                 lim,
                                 save=False,
                                 show=True,
                                 num_probes=16):
    """This function will plot a 4x4 (though there is some funcitonality built
        in for a different number of probes) grid of the CALIBRATED,
        INTEGRATED signals. Unless the calibration value was zero
        (when I built this some of the probes were dead during calibration)
        In which case it will plot the UNCALIBRATED (INTEGRATED) DATA IN RED
        for un-dead probes. Give it the shot (date + r + shot number) and
        the direction -
        0 for x
        1 for y
        2 for z
        and it will plot all the signals.

        If you want to mess around with the number of probes, try passing it in
        as the parameter, though you may need to adjust cols or rows or both,
        and also maybe the figure size, (make is smaller if you have more probes)

        --KG 06/13/19
        """

    if (dir == 0):
        direction = 'X'
    elif (dir == 1):
        direction = 'Y'
    else:
        direction = 'Z'

    figsize = (9, 5)
    cols = 4
    rows = (num_probes) // cols

    # define the data for cartesian plots

    def trim_axs(axs, N):
        """helper function to make sure the axs list to have correct length"""
        axs = axs.flat
        for ax in axs[N:]:
            ax.remove()
        return axs[:N]

    calibFile = 'calib-050119-4x4_lookup_1.txt'
    calibFile = os.path.join(os.getcwd(), calibFile)
    calibFactor = np.loadtxt(calibFile)

    fig1, axs = plt.subplots(rows, cols, figsize=figsize)
    axs = trim_axs(axs, num_probes)
    # for ax, case in zip(axs, cases)

    magdata = hdr.getquikData(shot)
    # Bx,By, Bz = pmd.getMagData(shot)
    for i in range(len(axs)):
        y = cumtrapz(
            magdata.unCalibData[dir, i, :] - mj.get_gaussian_moving_avg(
                magdata.time, magdata.unCalibData[dir, i, :], 15),
            magdata.time)

        # print(calibFactor[i][dir])
        x = magdata.time
        x = x[:len(y)]
        ax = axs[i]
        ax.set_title('Probe (%s,%s %s)' %
                     (str(i // 4 + 1), str(i % 4 + 1), direction),
                     fontsize=10)
        if (calibFactor[i][dir] == 0):
            # If the probe was dead during calibration
            ax.plot(x, y, color='r', linestyle='dashed')
        else:
            y = y * calibFactor[i][dir]
            ax.plot(x, y)
            ax.set_ylim(-lim, lim)
        # if np.average(np.abs(y)) < lim*1e-2:
        #     ax.plot(x, y, color = 'r')
        #     ax.set_ylim(-lim*1e-5, lim*1e-5)
        # print(i, np.max(y), np.min(y))

        ax.tick_params(axis='both', which='major', labelsize=7)
        ax.tick_params(axis='both', which='minor', labelsize=7)
        if (i % cols == 0):  #lable all the left cols with y label
            ax.set_ylabel("Gauss", fontsize=8)
        if (i // rows == rows - 1):  #lable all the left cols with y label
            ax.set_xlabel("Time $\\mu$s", fontsize=8)
        # plt.title("Shot %s" %(shot))
    if show:
        plt.show()
    if save:
        try:
            figname = os.getcwd() + '\\generated_images\\' + str(
                shot) + "-" + direction + "-chans.png"
            # print("Saved fig: %s" %(figname))
            plt.savefig(figname)
        except:
            figname = os.getcwd() + str(shot) + "-" + direction + "-chans.png"
            plt.savefig(figname)
            print("No generated_images folder. \nSaved fig: %s" % (figname))
Esempio n. 8
0
def generate_color_frame(shot, t, count, num_probes=16):
    plt.close("all")
    """ saves a frame instead of returning it ! """
    data = [[0] * 3 for i in range(num_probes)]
    magdata = hdr.getMagData(shot)
    # print(len(magdata.time))
    calibFile = 'calib-050119-4x4_lookup_1.txt'
    calibFile = os.path.join(os.getcwd(), calibFile)
    calibFactor = np.loadtxt(calibFile)

    for probe in range(num_probes):
        Bx_all = cumtrapz(
            magdata.unCalibData[0, probe, :] - mj.get_gaussian_moving_avg(
                magdata.time, magdata.unCalibData[0, probe, :],
                num_probes - 1), magdata.time)
        Bx = Bx_all[int(t)] * calibFactor[probe][0]

        By_all = cumtrapz(
            magdata.unCalibData[1, probe, :] - mj.get_gaussian_moving_avg(
                magdata.time, magdata.unCalibData[1, probe, :],
                num_probes - 1), magdata.time)
        By = By_all[int(t)] * calibFactor[probe][1]

        Bz_all = cumtrapz(
            magdata.unCalibData[2, probe, :] - mj.get_gaussian_moving_avg(
                magdata.time, magdata.unCalibData[2, probe, :],
                num_probes - 1), magdata.time)
        Bz = Bz_all[int(t)] * calibFactor[probe][2]

        data[probe] = [Bx, By, Bz]

        # Get position vectors in meters
    position_vectors = get_probeLocs_SSX_setup()

    u = [data[i][0] for i in range(len(data))]
    v = [data[i][1] for i in range(len(data))]
    w = [data[i][2] for i in range(len(data))]

    # too big, so I just zero it out
    # v[6] = 0

    x = [position_vectors[i][0] for i in range(len(position_vectors))]
    y = [position_vectors[i][1] for i in range(len(position_vectors))]
    z = [position_vectors[i][2] for i in range(len(position_vectors))]

    # qq = plt.quiver(y,z, v,w, u)
    # plt.plot()

    qq = plt.quiver(y, z, v, w, u, cmap=plt.cm.jet)
    scale_arrow = plt.quiver(.9, .9, .1, 0, label=".1 Tesla")
    cbar = plt.colorbar(qq, cmap=plt.cm.jet)
    cbar.set_label("Magnetic Field Strength (T)")
    # cbar.set_norm((-.085,.085))
    cbar.set_clim(-.085, .085)
    plt.xlabel("Y direction")
    plt.ylabel("Z direction")
    plt.xlim(-.085, .085)
    plt.ylim(-.085, .085)
    plt.title("Magnetic Data - Shot %s. Time: %s" % (shot, str(t)))
    path = os.getcwd()
    path = path + '/mag_images/'
    path = path + 'mag-' + str(count) + '.png'

    plt.savefig(path)
Esempio n. 9
0
def generate_3d_frame(shot, t, count, num_probes=16):
    """ saves a frame instead of returning it """
    plt.close("all")
    data = [[0] * 3 for i in range(num_probes)]
    magdata = hdr.getMagData(shot)
    # print(len(magdata.time))
    calibFile = 'calib-050119-4x4_lookup_1.txt'
    calibFile = os.path.join(os.getcwd(), calibFile)
    calibFactor = np.loadtxt(calibFile)

    for probe in range(num_probes):
        Bx_all = cumtrapz(
            magdata.unCalibData[0, probe, :] - mj.get_gaussian_moving_avg(
                magdata.time, magdata.unCalibData[0, probe, :],
                num_probes - 1), magdata.time)
        Bx = Bx_all[int(t)] * calibFactor[probe][0]

        By_all = cumtrapz(
            magdata.unCalibData[1, probe, :] - mj.get_gaussian_moving_avg(
                magdata.time, magdata.unCalibData[1, probe, :],
                num_probes - 1), magdata.time)
        By = By_all[int(t)] * calibFactor[probe][1]

        Bz_all = cumtrapz(
            magdata.unCalibData[2, probe, :] - mj.get_gaussian_moving_avg(
                magdata.time, magdata.unCalibData[2, probe, :],
                num_probes - 1), magdata.time)
        Bz = Bz_all[int(t)] * calibFactor[probe][2]

        data[probe] = [Bx, By, Bz]

        # Get position vectors in meters
    position_vectors = get_probeLocs_SSX_setup_cm()

    u = [data[i][0] for i in range(len(data))]
    v = [data[i][1] for i in range(len(data))]
    w = [data[i][2] for i in range(len(data))]

    # too big, so I just zero it out
    # v[6] = 0
    """
    In SSX setup:

        x -> -z
        y -> theta
        z -> -r

    """
    x = [position_vectors[i][0] * -1 for i in range(len(position_vectors))]
    y = [position_vectors[i][1] for i in range(len(position_vectors))]
    z = [position_vectors[i][2] * -1 for i in range(len(position_vectors))]

    # qq = plt.quiver(y,z, v,w, u)
    # plt.plot()

    iffy_chans = [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0]
    good_u = np.ma.masked_array(u, iffy_chans)
    good_v = np.ma.masked_array(v, iffy_chans)
    good_w = np.ma.masked_array(w, iffy_chans)

    dead_chans = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
    dead_u = np.ma.masked_array(u, np.logical_not(dead_chans))
    dead_v = np.ma.masked_array(v, np.logical_not(dead_chans))
    dead_w = np.ma.masked_array(w, np.logical_not(dead_chans))

    fixed_chans = np.logical_xor(iffy_chans, dead_chans)
    fixed_u = np.ma.masked_array(u, np.logical_not(fixed_chans))
    fixed_v = np.ma.masked_array(v, np.logical_not(fixed_chans))
    fixed_w = np.ma.masked_array(w, np.logical_not(fixed_chans))

    fig = plt.figure()
    ax = fig.gca(projection='3d')
    col_map = plt.get_cmap('Blues')

    # ax.quiver(x,y,z,good_u,good_v,good_w, length=0.01, normalize=False,cmap = col_map, label = "Calibrated probes" )
    # ax.quiver(x,y,z,dead_u,dead_v,dead_w, length=0.01, normalize=False, color = 'r', label = "Broken components")
    # ax.quiver(x,y,z,fixed_u,fixed_v,fixed_w, length=0.01, normalize=False,color = 'g', label = "interpolated components")

    # Q = ax.quiver(x,y,z,good_u,good_v,good_w, length=0.05,  normalize=False, pivot = 'middle', cmap = col_map)
    # ax.quiver(x,y,z,dead_u,dead_v,dead_w, length=0.05,  normalize=False, pivot = 'mid',  color = 'r')
    # ax.quiver(x,y,z,fixed_u,fixed_v,fixed_w, length=0.05,  normalize=False, pivot = 'mid', color = 'g')

    ax.quiver3D(x,
                y,
                z,
                good_u,
                good_v,
                good_w,
                length=0.02,
                arrow_length_ratio=.4,
                pivot='middle',
                normalize=False,
                cmap=col_map)
    ax.quiver3D(x,
                y,
                z,
                dead_u,
                dead_v,
                dead_w,
                length=0.02,
                arrow_length_ratio=.4,
                pivot='middle',
                normalize=False,
                color='r')
    ax.quiver3D(x,
                y,
                z,
                fixed_u,
                fixed_v,
                fixed_w,
                length=0.02,
                arrow_length_ratio=.4,
                pivot='middle',
                normalize=False,
                color='g')

    # qk = Q.quiverkey(Q, .92,.92, .1, label = ".1 Tesla")
    # ax.plot(np.zeros(100),np.zeros(100),'cyan--', alpha = .3)

    #set up the  pivot = 'mid',midline
    N = 100
    lim = 8.5

    #workaround quiverkey:
    ax.quiver(0,
              0,
              0,
              100,
              0,
              0,
              length=0.02,
              arrow_length_ratio=.4,
              pivot='middle',
              color='c',
              label='100 Gauss')

    # ax.plot(np.linspace(-lim, lim, N), np.zeros(N), 'k--', alpha  = 0.6, label = "midline")
    ax.plot(np.linspace(-lim, lim, N), np.zeros(N), 'k--', alpha=0.6)
    plt.legend()

    # add the sca;le
    # plt.legend(loc= 'upper right')

    #add cylinder:
    # Xc,Yc,Zc = generate_cyl_dat()
    # Xc[Xc>lim]= np.nan
    # Xc[Xc<-lim]= np.nan
    # Yc[Yc>lim]= np.nan
    # Yc[Yc<-lim]= np.nan
    # Zc[Zc>lim]= np.nan
    # Zc[Zc<-lim]= np.nan
    # ax.plot_surface(Xc, Yc, Zc,  color = 'tan', alpha=0.3)

    #add edge of SSX
    # z = np.empty(N)
    # z.fill(0.08025)
    # x = np.linspace(-lim, lim, N)

    # X, Z = np.meshgrid(x,z)
    # Y =

    # ax.plot(np.linspace(-lim, lim, N), z, 'y--', alpha  = 0.6, label = "midline")
    # ax.plot_surface(,   z, 'y--', alpha  = 0.6, label = "edge of SSX")

    #add title/labels
    ax.set_xlabel("$\\hat{Z}$, cm")
    ax.set_ylabel("$\\hat{\\theta}, cm$")
    ax.set_zlabel("$\\hat{R}, cm$")
    ax.set_zlim3d(-lim, lim)
    ax.set_xlim3d(-lim, lim)
    ax.set_ylim3d(-lim, lim)
    # plt.zlim(-lim, lim)
    # plt.xlim(-lim, lim)
    # plt.ylim(-lim, lim)
    plt.axis('equal')
    # plt.title("Magnetic Data - Shot %s. \n $\\bf{Time}$: %.2f $\\it{\mu s}$ " %(shot[7:], t))
    plt.title("Magnetic Data - Shot %s. \n $\\bf{Time}$: %.2f $\\it{\mu s}$ " %
              (shot, t))
    path = os.getcwd()
    path = path + '/mag_images/'

    #quick fix to make sure the ordering makes sense:
    str_count = str(count)
    if count < 10:
        str_count = '0' + str_count

    if count < 100:
        str_count = '0' + str_count

    if count < 1000:
        str_count = '0' + str_count

    path = path + str_count + '-mag' + '.png'

    plt.savefig(path)
Esempio n. 10
0
def get_Bxy_vecRendering_format(shot, fix=False, num_probes=16):
    """
    Returns data, the calibrated, integrated magentic field data
    using matrix calibration.

    UNFINISHED
    becuase of the matrix thing. But this function would return getMagData()
    data but in a version compatible with the animations
    in anim_bfield_merging.py

    --KG 07/25/19


    """

    data = [[0] * 3 for i in range(num_probes)]
    # B25 = [[0] *num_probes for i in range(3)]

    magdata = hdr.getquikData(shot)
    timeB = magdata.time

    calibFile = 'calib-050119-4x4_matrix.txt'
    calibFile = os.path.join(os.getcwd() + '\\magcalib\\',
                             calibFile)  #change where caliv file is here

    print("\n\nHERE")
    calibFactor = np.loadtxt(calibFile)

    # calibFactor[14] = [0,0,0]
    # calibFactor[6] = [0,0,0]
    # calibFactor[7] = [0,0,0]

    B25 = np.zeros([3, num_probes, len(timeB) - 1])
    B_vec = np.zeros([3, num_probes, len(timeB) - 1])
    win_size = 25

    for probe in range(num_probes):
        for i in range(3):
            B_vec[i, probe, :] = cumtrapz(
                magdata.unCalibData[i, probe, :] - mj.get_gaussian_moving_avg(
                    timeB, magdata.unCalibData[i, probe, :], win_size), timeB)

    for t in range(len(timeB) - 1):
        for probe in range(num_probes):
            C = np.reshape(calibFactor[probe], (3, 3))
            #put into 3 x1 matric
            V = [[B_vec[0, probe, t]], [B_vec[1, probe, t]],
                 [B_vec[2, probe, t]]]

            B = np.dot(C, V)
            Bx, By, Bz = B

            B25[0, probe, t] = Bx
            B25[1, probe, t] = By
            B25[2, probe, t] = Bz

    Bmod25 = np.zeros([num_probes, len(timeB) - 1])

    for j in range(num_probes):
        Bmod25[j, :] = np.sqrt(B25[0, j, :]**2 + B25[1, j, :]**2 +
                               B25[2, j, :]**2)

    return (timeB, B25)
Esempio n. 11
0
def main():

    minorLocator = AutoMinorLocator(10)  # leads to a single minor tick
    #ml = MultipleLocator(5)
    #minorLocator   = MultipleLocator(10)

    gs = gridspec.GridSpec(4, 1)
    # plt.rc('text', usetex=True)
    plt.rcParams['text.latex.preamble'] = [r'\boldmath']

    # where day
    day = '061219'
    shot_range = [6, 15]  ## 87 code broke
    # Looks like the scope that is used for inferometer?
    scope_used = '1'

    t0 = 40
    tf = 70
    path = 'data\\2019\\' + day + '\\' + day + '-Analysed\\'
    BEGIN = 35
    END = 100
    setting1 = '_wind-tunnel'
    setting2 = '_beta_Alfvenspeed'  #'_WLH_GasDelay_550mus'
    setting3 = '_eos_windtunnel'
    title1 = r': WLH, 1 mW, 600 $\mu s$, Merging Configuration'
    #title1 = ': WLH, 1 mW, 600 $\mu s$, coil scan at 25 kV'
    title2 = ': WLH, 1 mW, 600 $\mu s$, Merging Configuration'
    title3 = ': WLH, 1 mW, 600 $\mu s$, Merging Configuration'

    env, offset, phasediff = ds.dens_calib(dcs.calshot(day), scope=scope_used)
    a = env[0] / 2
    b = env[1] / 2

    # a = 1.312/2  for day  = '013017'
    # b = 1.234/2
    # a = 0.928/2
    # b = 0.978/2
    def f(time, A, B):  # this is your 'straight line' y=f(x)
        return A * time + B

    for shot in range(shot_range[0], shot_range[1] + 1):
        print('On Shot', shot)
        #    if shot==11 or 12: continue
        #########################################
        plt.close('all')
        fig = plt.figure(num=1,
                         figsize=(8.5, 10),
                         facecolor='w',
                         edgecolor='k')  #, dpi=600)
        #plt.clf()
        fig.subplots_adjust(top=0.95,
                            bottom=0.11,
                            left=0.14,
                            right=0.96,
                            hspace=0.2)

        ax1 = plt.subplot(3, 1, 1)
        plt.text(
            0.07,
            0.92,
            '(a)',
            fontsize=26,
            weight='bold',
            horizontalalignment='center',
            verticalalignment='center',
            transform=ax1.transAxes,
        )

        density = np.zeros([20002])
        dens = ssxd.interferometer(day + 'r' + str(shot), [a, b],
                                   scope=scope_used,
                                   showPlot=False)
        density = dens.density
        sm_density = ism.iter_smooth(density, loops=30, window_len=29)
        n = sm_density / (1e15)
        #popt, pcov = curve_fit(f, dens.time[0:2000], n[0:2000])
        #n = n + f(dens.time, *popt*1.3)
        timeN = dens.time
        plt.plot(timeN, n, color='k', lw=2)
        plt.ylabel(r'n $(10^{15}\ cm^{-3})$', fontsize=20, weight='bold')
        plt.title(day + 'r' + str(shot) + title1, fontsize=20, weight='bold')
        ax1.get_yaxis().set_label_coords(
            -0.11, 0.6)  # for aligning the y-labels in one line
        plt.setp(ax1.spines.values(),
                 linewidth=2)  #changing the axis linewidth
        ax1.tick_params(axis='both',
                        direction='in',
                        length=7,
                        width=2,
                        labelsize=20)
        ax1.tick_params(axis='x',
                        which='minor',
                        direction='in',
                        length=5,
                        width=1)
        ax1.xaxis.set_minor_locator(minorLocator)
        #ax1.set_xticklabels([])
        #ax1.set_yticks([0.5,1.0,1.5,2.0])
        plt.xlim(20, 100)
        # plt.ylim(0, 2)

        #########################################
        ax2 = plt.subplot(3, 1, 2)
        plt.text(0.07,
                 0.92,
                 '(b)',
                 fontsize=26,
                 weight='bold',
                 horizontalalignment='center',
                 verticalalignment='center',
                 transform=ax2.transAxes)
        d = idsd.ids(day + 'r' + str(shot))
        d.processIDS(times=[-2, 125])
        timeT = d.time
        indices = np.where(
            d.kTFit.mask == False)[0]  #Get indices of unmasked values
        Temp = d.kTFit.compressed()  #Get unmasked values
        timeT = timeT[indices]  #Adjust length of time array
        Terr = d.kTErr[indices]
        plt.errorbar(timeT,
                     Temp,
                     Terr,
                     fmt='None',
                     ecolor='k',
                     elinewidth=2,
                     markeredgewidth=2,
                     capsize=4)
        plt.plot(timeT, Temp, 'kx', color='k', ms=8, mew=2)
        plt.plot(timeT, Temp, color='k', linewidth=1)
        plt.ylabel(r'T$_i\ (eV)$', fontsize=20, weight='bold')
        #ax2.set_xticklabels([])
        ax2.get_yaxis().set_label_coords(-0.11, 0.6)
        plt.setp(ax2.spines.values(), linewidth=2)
        ax2.tick_params(axis='both',
                        direction='in',
                        length=7,
                        width=2,
                        labelsize=20)
        ax2.tick_params(axis='x',
                        which='minor',
                        direction='in',
                        length=5,
                        width=1)
        ax2.xaxis.set_minor_locator(minorLocator)
        #ax2.tick_params(axis='y', direction='in', length=7, width =2)
        plt.xlim(20, 100)
        plt.ylim(0, 35)

        #########################################
        ax3 = plt.subplot(3, 1, 3)
        plt.text(0.07,
                 0.92,
                 '(c)',
                 fontsize=26,
                 weight='bold',
                 horizontalalignment='center',
                 verticalalignment='center',
                 transform=ax3.transAxes)
        data = hdr.getquikData(
            day + 'r' + str(shot))  #x, y and z components of the 5th probe
        ##### changing from 15x, 15y and 15z to 6x, 6y and 6z
        # Bx=cumtrapz(data.unCalibData[0,14,:]-mj.get_gaussian_moving_avg(data.time, data.unCalibData[0,14,:], 15), data.time)/7.63e-4
        # By=cumtrapz(data.unCalibData[1,14,:]-mj.get_gaussian_moving_avg(data.time, data.unCalibData[1,14,:], 15), data.time)/8.06e-4
        # Bz=cumtrapz(data.unCalibData[2,2,:]-mj.get_gaussian_moving_avg(data.time, data.unCalibData[2,2,:], 15), data.time)/6.76e-4
        # I think the get moving average is accounting for some ofset...

        # Bx=cumtrapz(data.unCalibData[0,5,:]-mj.get_gaussian_moving_avg(data.time, data.unCalibData[0,5,:], 15), data.time)/7.63e-4
        # By=cumtrapz(data.unCalibData[1,5,:]-mj.get_gaussian_moving_avg(data.time, data.unCalibData[1,5,:], 15), data.time)/8.06e-4
        # Bz=cumtrapz(data.unCalibData[2,1,:]-mj.get_gaussian_moving_avg(data.time, data.unCalibData[2,1,:], 15), data.time)/6.76e-4
        Bx = cumtrapz(
            data.unCalibData[0, 5, :] - mj.get_gaussian_moving_avg(
                data.time, data.unCalibData[0, 5, :], 15),
            data.time) * -1.088718234303543795e+03
        By = cumtrapz(
            data.unCalibData[1, 5, :] - mj.get_gaussian_moving_avg(
                data.time, data.unCalibData[1, 5, :], 15),
            data.time) * -1.119343007186590285e+03
        Bz = cumtrapz(
            data.unCalibData[2, 1, :] - mj.get_gaussian_moving_avg(
                data.time, data.unCalibData[2, 1, :], 15),
            data.time) * -1.422749719357707363e+03
        timeB = data.time - data.time[0] - 2
        timeB = timeB[:-1]
        #    Bx=cumtrapz(data.unCalibData[0,14,1500:] - np.mean(data.unCalibData[0,14,4700:6500]), data.time[1500:])/7.63e-4
        #    By=cumtrapz(data.unCalibData[1,14,1500:] - np.mean(data.unCalibData[1,14,4700:6500]), data.time[1500:])/8.06e-4
        #    Bz=cumtrapz(data.unCalibData[2,2,1500:] - np.mean(data.unCalibData[2,2,4700:6500]), data.time[1500:])/6.76e-4
        #    timeB=data.time-data.time[0]-2
        #    timeB= timeB[1500:-1]
        ########## detrending the Bx, By, Bz signals ################
        #    poptx, pcovx = curve_fit(f, timeB, Bx)
        #    Bx = Bx - f(timeB, *poptx)
        #    popty, pcovy = curve_fit(f, timeB, By)
        #    By = By - f(timeB, *popty)
        #    poptz, pcovz = curve_fit(f, timeB, Bz)
        #    Bz = Bz - f(timeB, *poptz)
        #    plt.plot(timeB, Bx,color='r', lw =2)
        #    plt.plot(timeB, By,color='b', lw =2)
        #    plt.plot(timeB, Bz,color='g', lw =2)

        modB = np.sqrt((Bx**2) + (By**2) + (Bz**2))
        #poptz, pcovz = curve_fit(f, timeB, modB)
        #plt.plot(timeB, modB, linewidth=2)
        #    plt.plot(timeB, f(timeB, *poptz),color='g', lw =2)
        #    modB_diff = np.mean(data.unCalibData[0,14,4700:4700])
        #    modB = modB-modB_diff
        plt.plot(timeB, Bx, color='r', lw=1, label='B$_{x,6}$')
        plt.plot(timeB, By, color='g', lw=1, label='B$_{y,6}$')
        plt.plot(timeB, Bz, color='b', lw=1, label='B$_{z,6}$')
        plt.plot(timeB, modB, color='k', lw=2, label='$|B|$')
        plt.legend().draggable()
        plt.ylabel(r'$|B|\ (T)$', fontsize=20, weight='bold')
        #ax.set_xticklabels([])
        #ax.xaxis.set_tick_params(labeltop='on',labelsize=20)
        plt.setp(ax3.spines.values(), linewidth=2)
        ax3.get_yaxis().set_label_coords(-0.11, 0.6)
        ax3.tick_params(axis='both',
                        direction='in',
                        length=7,
                        width=2,
                        labelsize=20)
        ax3.tick_params(axis='x',
                        which='minor',
                        direction='in',
                        length=5,
                        width=1)
        ax3.xaxis.set_minor_locator(minorLocator)
        plt.xlim(20, 100)
        plt.xlabel(r'$Time\ (\mu s)$', fontsize=20, weight='bold')

        ########## Saving Figure 1 ##################
        plt.show()
        fName = path + day + 'r' + str(shot) + setting1 + '_plot.png'
        # fig.savefig(fName,dpi=600,facecolor='w',edgecolor='k')
    '''
Esempio n. 12
0
def run_nBT(shots, day, t_min=15, t_max=100, show=True, save=False, ylim=35):
    """All of this based on Manjit's code, with a minimal amount of modifications.

    This is the main code to prodcue graphs of the temperature, density and
    magnetic feidl strength

      -- KG 06/28/19
      """

    minorLocator = AutoMinorLocator(10)  # leads to a single minor tick
    gs = gridspec.GridSpec(4, 1)
    plt.rcParams['text.latex.preamble'] = [r'\boldmath']

    # Looks like the scope that is used for inferometer?
    scope_used = '1'

    path = 'data\\2019\\' + day + '\\Analyzed\\'

    setting1 = '_wind-tunnel'
    setting2 = '_beta_Alfvenspeed'  #'_WLH_GasDelay_550mus'
    setting3 = '_eos_windtunnel'
    title1 = r': WLH, 1 mW, 600 $\mu s$, Merging Configuration'
    #title1 = ': WLH, 1 mW, 600 $\mu s$, coil scan at 25 kV'
    title2 = ': WLH, 1 mW, 600 $\mu s$, Merging Configuration'
    title3 = ': WLH, 1 mW, 600 $\mu s$, Merging Configuration'

    env, offset, phasediff = ds.dens_calib(dcs.calshot(day), scope=scope_used)
    a = env[0] / 2
    b = env[1] / 2

    # a = 1.312/2  for day  = '013017'
    # b = 1.234/2
    # a = 0.928/2
    # b = 0.978/2
    def f(time, A, B):  # this is your 'straight line' y=f(x)
        return A * time + B

    for shot in shots:
        print('On Shot', shot)

        plt.close('all')
        # Adjust the spacing:
        fig = plt.figure(num=1,
                         figsize=(8.5, 10),
                         facecolor='w',
                         edgecolor='k')  #, dpi=600)
        fig.subplots_adjust(top=0.95,
                            bottom=0.11,
                            left=0.14,
                            right=0.96,
                            hspace=0.2)
        ax1 = plt.subplot(3, 1, 1)

        plt.text(
            0.07,
            0.92,
            '(a)',
            fontsize=26,
            weight='bold',
            horizontalalignment='center',
            verticalalignment='center',
            transform=ax1.transAxes,
        )

        dens = ssxd.interferometer(day + 'r' + str(shot), [a, b],
                                   scope=scope_used,
                                   showPlot=False)
        density = dens.density
        sm_density = ism.iter_smooth(density, loops=30, window_len=29)
        n = sm_density / (1e15)
        #popt, pcov = curve_fit(f, dens.time[0:2000], n[0:2000])
        #n = n + f(dens.time, *popt*1.3)
        timeN = dens.time
        plt.plot(timeN, n, color='k', lw=2)
        plt.ylabel(r'n $(10^{15}\ cm^{-3})$', fontsize=20, weight='bold')
        # plt.title(day+'r'+str(shot)+title1, fontsize=20, weight='bold')
        plt.title(day + 'r' + str(shot), fontsize=20, weight='bold')
        ax1.get_yaxis().set_label_coords(
            -0.11, 0.6)  # for aligning the y-labels in one line
        plt.setp(ax1.spines.values(),
                 linewidth=2)  #changing the axis linewidth
        ax1.tick_params(axis='both',
                        direction='in',
                        length=7,
                        width=2,
                        labelsize=20)
        ax1.tick_params(axis='x',
                        which='minor',
                        direction='in',
                        length=5,
                        width=1)
        ax1.xaxis.set_minor_locator(minorLocator)
        plt.xlim(t_min, t_max)

        #########################################
        ax2 = plt.subplot(3, 1, 2)
        plt.text(0.07,
                 0.92,
                 '(b)',
                 fontsize=26,
                 weight='bold',
                 horizontalalignment='center',
                 verticalalignment='center',
                 transform=ax2.transAxes)
        d = idsd.ids(day + 'r' + str(shot))
        d.processIDS(times=[-2, 125])
        timeT = d.time
        # This is where the errors happen?
        indices = np.where(
            d.kTFit.mask == False)[0]  #Get indices of unmasked values
        Temp = d.kTFit.compressed()  #Get unmasked values
        timeT = timeT[indices]  #Adjust length of time array
        Terr = d.kTErr[indices]
        plt.errorbar(timeT,
                     Temp,
                     Terr,
                     fmt='None',
                     ecolor='k',
                     elinewidth=2,
                     markeredgewidth=2,
                     capsize=4)
        plt.plot(timeT, Temp, 'kx', color='k', ms=8, mew=2)
        plt.plot(timeT, Temp, color='k', linewidth=1)
        plt.ylabel(r'T$_i\ (eV)$', fontsize=20, weight='bold')
        #ax2.set_xticklabels([])
        ax2.get_yaxis().set_label_coords(-0.11, 0.6)
        plt.setp(ax2.spines.values(), linewidth=2)
        ax2.tick_params(axis='both',
                        direction='in',
                        length=7,
                        width=2,
                        labelsize=20)
        ax2.tick_params(axis='x',
                        which='minor',
                        direction='in',
                        length=5,
                        width=1)
        ax2.xaxis.set_minor_locator(minorLocator)
        #ax2.tick_params(axis='y', direction='in', length=7, width =2)
        plt.xlim(t_min, t_max)
        plt.ylim(0, ylim)

        #########################################
        ax3 = plt.subplot(3, 1, 3)
        plt.text(0.07,
                 0.92,
                 '(c)',
                 fontsize=26,
                 weight='bold',
                 horizontalalignment='center',
                 verticalalignment='center',
                 transform=ax3.transAxes)
        data = hdr.getquikData(
            day + 'r' + str(shot))  #x, y and z components of the 5th probe
        #calibration factors from lookup_4
        calib = [
            9.834933502238857272e+02, -1.263620982013806497e+03,
            -1.679900552773548725e+03
        ]
        Bx = cumtrapz(
            data.unCalibData[0, 4, :] - mj.get_gaussian_moving_avg(
                data.time, data.unCalibData[0, 4, :], 15),
            data.time) * calib[0]
        By = cumtrapz(
            data.unCalibData[1, 4, :] - mj.get_gaussian_moving_avg(
                data.time, data.unCalibData[1, 4, :], 15),
            data.time) * calib[1]
        Bz = cumtrapz(
            data.unCalibData[2, 4, :] - mj.get_gaussian_moving_avg(
                data.time, data.unCalibData[2, 4, :], 15),
            data.time) * calib[2]
        timeB = data.time - data.time[0] - 2
        # timeB= data.time
        # make sure that the dimesntions match
        timeB = timeB[:len(Bx)]

        modB = np.sqrt((Bx**2) + (By**2) + (Bz**2))

        plt.plot(timeB, Bx, color='r', lw=1, label='B$_{x,6}$')
        plt.plot(timeB, By, color='g', lw=1, label='B$_{y,6}$')
        plt.plot(timeB, Bz, color='b', lw=1, label='B$_{z,6}$')
        plt.plot(timeB, modB, color='k', lw=2, label='$|B|$')
        plt.legend().draggable()
        plt.ylabel(r'$|B|\ (G)$', fontsize=20, weight='bold')

        plt.setp(ax3.spines.values(), linewidth=2)
        ax3.get_yaxis().set_label_coords(-0.11, 0.6)
        ax3.tick_params(axis='both',
                        direction='in',
                        length=7,
                        width=2,
                        labelsize=20)
        ax3.tick_params(axis='x',
                        which='minor',
                        direction='in',
                        length=5,
                        width=1)
        ax3.xaxis.set_minor_locator(minorLocator)
        plt.xlim(t_min, t_max)
        plt.xlabel(r'$Time\ (\mu s)$', fontsize=20, weight='bold')

        ########## Saving Figure 1 ##################
        if show:
            plt.show()
        fName = path + day + 'r' + str(shot) + setting1 + '_plot.png'
        if save:
            fig.savefig(fName, dpi=600, facecolor='w', edgecolor='k')