Esempio n. 1
0
def github(tag='main', deformable=False):
    if deformable:
        tag = TAGS_DEFORMABLE_DETR[tag]
        return hub.github(owner=GITHUB_DEFORMABLE_DETR['owner'],
                          project=GITHUB_DEFORMABLE_DETR['project'],
                          tag=tag)
    else:
        tag = TAGS_DETR[tag]
        return hub.github(owner=GITHUB_DETR['owner'],
                          project=GITHUB_DETR['project'],
                          tag=tag)
Esempio n. 2
0
def deploy_yolo5():
    parser = argparse.ArgumentParser(
        'Deploy a trained YOLO5 checkpoint on S3 by stripping out training states'
    )
    parser.add_argument('chkpt',
                        help='Path to a trained checkpoint for deployment')
    parser.add_argument('--url', help='s3://bucket/key/to/chkpt.pt')
    cfg = parser.parse_args()

    from ml import hub
    from ml.hub import github
    from ml.vision.models.detection.yolo5 import GITHUB
    repo = hub.repo(github(**GITHUB), force_reload=False)
    chkpt = cfg.chkpt
    if chkpt is None:
        chkpt = f"{repo}/weights/best.pt"

    sys.add_path(repo)
    from utils.general import strip_optimizer
    before = os.path.getsize(chkpt)
    strip_optimizer(chkpt)
    after = os.path.getsize(chkpt)
    logging.info(
        f"Optimized {chkpt} optimized from {before / 1024**2:.2f}MB to {after / 1024**2:.2f}MB"
    )
    if cfg.url.startswith('s3://'):
        logging.info(f"Uploading to {cfg.url}...")
        parts = cfg.url[len('s3://'):].split('/')
        bucket = parts[0]
        key = '/'.join(parts[1:])
        hub.upload_s3(chkpt, bucket, key)
    else:
        ValueError(f"Unsupported URL to upload: {cfg.url}")
Esempio n. 3
0
def train_yolo5():
    """Train YOLOv5 over a dataset in YOLO5/COCO format.
    
    Usage:
        train_yolo5 ../../datasets/Retail81 --with-coco --names object --device 1 --batch-size 32
    
    References:
        python train.py --data coco.yaml --cfg yolov5x.yaml --weights yolov5x.pt --device 1 --batch-size 16
    """
    parser = argparse.ArgumentParser(
        'Train YOLO5 oover a dataset in YOLO5/COCO format')
    parser.add_argument('path', help='Path to a dataset in YOLO/COCO format')
    parser.add_argument('--arch',
                        choices=['yolov5l', 'yolov5x'],
                        default='yolov5x',
                        help='YOLOv5 model architecture to train')
    parser.add_argument('--tag',
                        choices=['v1.0', 'v2.0', 'v3.0'],
                        default='v3.0',
                        help='YOLOv5 repo version tag')
    parser.add_argument('--batch-size', type=int, default=16)
    parser.add_argument('--device',
                        default='',
                        help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--epochs', type=int, default=100)
    parser.add_argument('--names', nargs='*', default=[], help='class names')
    parser.add_argument('--with-coco',
                        action='store_true',
                        help='Including COCO80 classes')
    args = parser.parse_args()
    logging.info(
        f"dataset={args.path}, arch={args.arch}, names={args.names}, with_coco={args.with_coco}"
    )

    path = Path(args.path).resolve()
    data = path / 'data'
    data.mkdir(exist_ok=True)
    data /= f"{path.name.lower()}.yaml"
    models = path / "models"
    models.mkdir(exist_ok=True)
    cfg = f"{args.arch}.yaml"
    weights = f"{args.arch}.pt"
    names = args.names
    if args.with_coco:
        from ml.vision.datasets.coco import COCO80_CLASSES
        names = COCO80_CLASSES + names
    nc = len(names)
    assert nc > 0
    with open(data, 'w') as f:
        yaml = f"""
train: { path / 'train.txt' }
val: { path / 'val.txt' }
nc: {nc}
names: {names}
"""
        print(yaml, file=f)
        logging.info(yaml)

    from ml.vision.models.detection.yolo5 import github
    from ml.utils import Config
    from ml import hub
    repo = hub.repo(github(tag=tag), force_reload=False)
    config = Config().load(f"{repo}/models/{cfg}")
    config.nc = nc
    config.save(models / cfg)

    os.chdir(repo)
    cmd = f"python train.py --data {data.resolve()} --cfg {models / cfg} --weights {weights} --device {args.device} --batch-size {args.batch_size} --epochs {args.epochs}"
    logging.info(f"wd={os.getcwd()}")
    logging.info(cmd)
    r = os.system(cmd)
    if r:
        logging.error(f"Failed train YOLOv5 over {path} with res={r}")
    else:
        # v1.0
        # logging.info(f"Best trained checkpoiont at {repo}/weights/best.pt")
        # last v1.0 and v2.0+
        logging.info(
            f"Best trained checkpoiont at {repo}/runs/expX/weights/best.pt")
Esempio n. 4
0
def github(tag='main'):
    tag = TAGS[tag]
    return hub.github(owner=GITHUB['owner'],
                      project=GITHUB['project'],
                      tag=tag)