def get_td3_trainer(env, parameters, use_gpu): state_dim = get_num_output_features(env.normalization) action_dim = get_num_output_features(env.normalization_action) q1_network = FullyConnectedParametricDQN( state_dim, action_dim, parameters.q_network.layers, parameters.q_network.activations, ) q2_network = None if parameters.training.use_2_q_functions: q2_network = FullyConnectedParametricDQN( state_dim, action_dim, parameters.q_network.layers, parameters.q_network.activations, ) actor_network = FullyConnectedActor( state_dim, action_dim, parameters.actor_network.layers, parameters.actor_network.activations, ) min_action_range_tensor_training = torch.full((1, action_dim), -1) max_action_range_tensor_training = torch.full((1, action_dim), 1) min_action_range_tensor_serving = torch.FloatTensor( env.action_space.low).unsqueeze(dim=0) max_action_range_tensor_serving = torch.FloatTensor( env.action_space.high).unsqueeze(dim=0) if use_gpu: q1_network.cuda() if q2_network: q2_network.cuda() actor_network.cuda() min_action_range_tensor_training = min_action_range_tensor_training.cuda( ) max_action_range_tensor_training = max_action_range_tensor_training.cuda( ) min_action_range_tensor_serving = min_action_range_tensor_serving.cuda( ) max_action_range_tensor_serving = max_action_range_tensor_serving.cuda( ) trainer_args = [q1_network, actor_network, parameters] trainer_kwargs = { "q2_network": q2_network, "min_action_range_tensor_training": min_action_range_tensor_training, "max_action_range_tensor_training": max_action_range_tensor_training, "min_action_range_tensor_serving": min_action_range_tensor_serving, "max_action_range_tensor_serving": max_action_range_tensor_serving, } return TD3Trainer(*trainer_args, use_gpu=use_gpu, **trainer_kwargs)
def test_save_load_batch_norm(self): state_dim = 8 action_dim = 4 model = FullyConnectedActor( state_dim, action_dim, sizes=[7, 6], activations=["relu", "relu"], use_batch_norm=True, ) # Freezing batch_norm model.eval() expected_num_params, expected_num_inputs, expected_num_outputs = 21, 1, 1 check_save_load(self, model, expected_num_params, expected_num_inputs, expected_num_outputs)
def test_actor_wrapper(self): state_normalization_parameters = {i: _cont_norm() for i in range(1, 5)} action_normalization_parameters = { i: _cont_action_norm() for i in range(101, 105) } state_preprocessor = Preprocessor(state_normalization_parameters, False) postprocessor = Postprocessor(action_normalization_parameters, False) # Test with FullyConnectedActor to make behavior deterministic actor = FullyConnectedActor( state_dim=len(state_normalization_parameters), action_dim=len(action_normalization_parameters), sizes=[16], activations=["relu"], ) actor_with_preprocessor = ActorWithPreprocessor( actor, state_preprocessor, postprocessor ) wrapper = ActorPredictorWrapper(actor_with_preprocessor) input_prototype = actor_with_preprocessor.input_prototype() action = wrapper(*input_prototype) self.assertEqual(action.shape, (1, len(action_normalization_parameters))) expected_output = postprocessor( actor( rlt.PreprocessedState.from_tensor( state_preprocessor(*input_prototype[0]) ) ).action ) self.assertTrue((expected_output == action).all())
def test_basic(self): state_dim = 8 action_dim = 4 model = FullyConnectedActor( state_dim, action_dim, sizes=[7, 6], activations=["relu", "relu"], use_batch_norm=True, ) input = model.input_prototype() self.assertEqual((1, state_dim), input.state.float_features.shape) # Using batch norm requires more than 1 example in training, avoid that model.eval() action = model(input) self.assertEqual((1, action_dim), action.action.shape)
def test_save_load_batch_norm(self): state_dim = 8 action_dim = 4 model = FullyConnectedActor( state_dim, action_dim, sizes=[7, 6], activations=["relu", "relu"], use_batch_norm=True, ) # Freezing batch_norm model.eval() expected_num_params, expected_num_inputs, expected_num_outputs = 21, 1, 1 check_save_load( self, model, expected_num_params, expected_num_inputs, expected_num_outputs )
def test_save_load(self): state_dim = 8 action_dim = 4 model = FullyConnectedActor( state_dim, action_dim, sizes=[7, 6], activations=["relu", "relu"], use_batch_norm=False, ) expected_num_params, expected_num_inputs, expected_num_outputs = 6, 1, 1 check_save_load(self, model, expected_num_params, expected_num_inputs, expected_num_outputs)
def get_td3_trainer(self, env, parameters, use_gpu): state_dim = get_num_output_features(env.normalization) action_dim = get_num_output_features(env.normalization_action) q1_network = FullyConnectedParametricDQN( state_dim, action_dim, parameters.q_network.layers, parameters.q_network.activations, ) q2_network = None if parameters.training.use_2_q_functions: q2_network = FullyConnectedParametricDQN( state_dim, action_dim, parameters.q_network.layers, parameters.q_network.activations, ) actor_network = FullyConnectedActor( state_dim, action_dim, parameters.actor_network.layers, parameters.actor_network.activations, ) if use_gpu: q1_network.cuda() if q2_network: q2_network.cuda() actor_network.cuda() return TD3Trainer( q1_network, actor_network, parameters, q2_network=q2_network, use_gpu=use_gpu, )