def test_minibatches_per_step(self):
        _epochs = self.epochs
        self.epochs = 2
        rl_parameters = RLParameters(gamma=0.95,
                                     target_update_rate=0.9,
                                     maxq_learning=True)
        rainbow_parameters = RainbowDQNParameters(double_q_learning=True,
                                                  dueling_architecture=False)
        training_parameters1 = TrainingParameters(
            layers=self.layers,
            activations=self.activations,
            minibatch_size=1024,
            minibatches_per_step=1,
            learning_rate=0.25,
            optimizer="ADAM",
        )
        training_parameters2 = TrainingParameters(
            layers=self.layers,
            activations=self.activations,
            minibatch_size=128,
            minibatches_per_step=8,
            learning_rate=0.25,
            optimizer="ADAM",
        )
        env1 = Env(self.state_dims, self.action_dims)
        env2 = Env(self.state_dims, self.action_dims)
        model_parameters1 = DiscreteActionModelParameters(
            actions=env1.actions,
            rl=rl_parameters,
            rainbow=rainbow_parameters,
            training=training_parameters1,
        )
        model_parameters2 = DiscreteActionModelParameters(
            actions=env2.actions,
            rl=rl_parameters,
            rainbow=rainbow_parameters,
            training=training_parameters2,
        )
        # minibatch_size / 8, minibatches_per_step * 8 should give the same result
        logger.info("Training model 1")
        trainer1 = self._train(model_parameters1, env1)
        SummaryWriterContext._reset_globals()
        logger.info("Training model 2")
        trainer2 = self._train(model_parameters2, env2)

        weight1 = trainer1.q_network.fc.layers[-1].weight.detach().numpy()
        weight2 = trainer2.q_network.fc.layers[-1].weight.detach().numpy()

        # Due to numerical stability this tolerance has to be fairly high
        self.assertTrue(np.allclose(weight1, weight2, rtol=0.0, atol=1e-3))
        self.epochs = _epochs
Esempio n. 2
0
    def test_trainer_maxq(self):
        env = Env(self.state_dims, self.action_dims)
        env.seed(42)
        maxq_parameters = DiscreteActionModelParameters(
            actions=env.actions,
            rl=RLParameters(
                gamma=0.99,
                target_update_rate=1.0,
                reward_burnin=100,
                maxq_learning=True,
            ),
            training=TrainingParameters(
                layers=self.layers,
                activations=self.activations,
                minibatch_size=self.minibatch_size,
                learning_rate=1.0,
                optimizer="ADAM",
            ),
        )
        maxq_trainer = DiscreteActionTrainer(maxq_parameters,
                                             env.normalization)
        # predictor = maxq_trainer.predictor()

        logger.info("Generating constant_reward MDPs..")

        states, actions, rewards, next_states, next_actions, is_terminal, possible_next_actions = env.generate_samples_discrete(
            self.num_samples)

        logger.info("Preprocessing constant_reward MDPs..")

        tdps = env.preprocess_samples_discrete(
            states,
            actions,
            rewards,
            next_states,
            next_actions,
            is_terminal,
            possible_next_actions,
            self.minibatch_size,
        )

        for epoch in range(self.epochs):
            logger.info("Training.. " + str(epoch))
            for tdp in tdps:
                maxq_trainer.train_numpy(tdp, None)
            logger.info(" ".join([
                "Training epoch",
                str(epoch),
                "average q values",
                str(np.mean(workspace.FetchBlob(maxq_trainer.q_score_output))),
                "td_loss",
                str(workspace.FetchBlob(maxq_trainer.loss_blob)),
            ]))

        # Q value should converge to very close to 100
        avg_q_value_after_training = np.mean(
            workspace.FetchBlob(maxq_trainer.q_score_output))

        self.assertLess(avg_q_value_after_training, 101)
        self.assertGreater(avg_q_value_after_training, 99)
Esempio n. 3
0
 def get_sarsa_trainer_reward_boost(self, environment, reward_shape):
     rl_parameters = RLParameters(
         gamma=DISCOUNT,
         target_update_rate=1.0,
         reward_burnin=10,
         maxq_learning=False,
         reward_boost=reward_shape,
     )
     training_parameters = TrainingParameters(
         layers=[-1, -1],
         activations=["linear"],
         minibatch_size=self.minibatch_size,
         learning_rate=0.125,
         optimizer="ADAM",
     )
     return DiscreteActionTrainer(
         DiscreteActionModelParameters(
             actions=environment.ACTIONS,
             rl=rl_parameters,
             training=training_parameters,
             rainbow=RainbowDQNParameters(double_q_learning=True,
                                          dueling_architecture=False),
             in_training_cpe=InTrainingCPEParameters(mdp_sampled_rate=0.1),
         ),
         environment.normalization,
     )
    def test_no_soft_update(self):
        model = Model()
        target_model = copy.deepcopy(model)

        for target_param, param in zip(model.parameters(),
                                       target_model.parameters()):
            self.assertIs(target_param, param)

        optimizer = torch.optim.Adam(model.parameters())

        x = torch.tensor([1, 2], dtype=torch.int64)
        emb = model(x)

        loss = emb.sum()

        loss.backward()
        optimizer.step()

        params = list(model.parameters())
        self.assertEqual(1, len(params))
        param = params[0].detach().numpy()

        trainer = RLTrainer(DiscreteActionModelParameters(rl=RLParameters()),
                            use_gpu=False)
        trainer._soft_update(model, target_model, 0.1)

        target_params = list(target_model.parameters())
        self.assertEqual(1, len(target_params))
        target_param = target_params[0].detach().numpy()

        npt.assert_array_equal(target_param, param)
 def get_sarsa_trainer_reward_boost(
     self,
     environment,
     reward_shape,
     dueling,
     use_gpu=False,
     use_all_avail_gpus=False,
 ):
     rl_parameters = RLParameters(
         gamma=DISCOUNT,
         target_update_rate=1.0,
         reward_burnin=10,
         maxq_learning=False,
         reward_boost=reward_shape,
     )
     training_parameters = TrainingParameters(
         layers=[-1, 128, -1] if dueling else [-1, -1],
         activations=["relu", "linear"] if dueling else ["linear"],
         minibatch_size=self.minibatch_size,
         learning_rate=0.05,
         optimizer="ADAM",
     )
     return DQNTrainer(
         DiscreteActionModelParameters(
             actions=environment.ACTIONS,
             rl=rl_parameters,
             training=training_parameters,
             rainbow=RainbowDQNParameters(
                 double_q_learning=True, dueling_architecture=dueling
             ),
         ),
         environment.normalization,
         use_gpu=use_gpu,
         use_all_avail_gpus=use_all_avail_gpus,
     )
Esempio n. 6
0
 def get_sarsa_parameters(self, environment, reward_shape, dueling,
                          categorical, clip_grad_norm):
     rl_parameters = RLParameters(
         gamma=DISCOUNT,
         target_update_rate=1.0,
         maxq_learning=False,
         reward_boost=reward_shape,
     )
     training_parameters = TrainingParameters(
         layers=[-1, 128, -1] if dueling else [-1, -1],
         activations=["relu", "linear"] if dueling else ["linear"],
         minibatch_size=self.minibatch_size,
         learning_rate=0.05,
         optimizer="ADAM",
         clip_grad_norm=clip_grad_norm,
     )
     return DiscreteActionModelParameters(
         actions=environment.ACTIONS,
         rl=rl_parameters,
         training=training_parameters,
         rainbow=RainbowDQNParameters(
             double_q_learning=True,
             dueling_architecture=dueling,
             categorical=categorical,
         ),
     )
Esempio n. 7
0
    def test_trainer_maxq(self):
        env = Env(self.state_dims, self.action_dims)
        env.seed(42)
        maxq_parameters = DiscreteActionModelParameters(
            actions=env.actions,
            rl=RLParameters(
                gamma=0.99,
                target_update_rate=0.9,
                reward_burnin=100,
                maxq_learning=True,
            ),
            rainbow=RainbowDQNParameters(double_q_learning=True,
                                         dueling_architecture=False),
            training=TrainingParameters(
                layers=self.layers,
                activations=self.activations,
                minibatch_size=self.minibatch_size,
                learning_rate=0.25,
                optimizer="ADAM",
            ),
        )
        maxq_trainer = DQNTrainer(maxq_parameters, env.normalization)

        logger.info("Generating constant_reward MDPs..")

        states, actions, rewards, next_states, next_actions, is_terminal, possible_actions, possible_next_actions = env.generate_samples_discrete(
            self.num_samples)

        logger.info("Preprocessing constant_reward MDPs..")

        for epoch in range(self.epochs):
            tdps = env.preprocess_samples_discrete(
                states,
                actions,
                rewards,
                next_states,
                next_actions,
                is_terminal,
                possible_actions,
                possible_next_actions,
                self.minibatch_size,
            )
            logger.info("Training.. " + str(epoch))
            for tdp in tdps:
                maxq_trainer.train(tdp)
            logger.info(" ".join([
                "Training epoch",
                str(epoch),
                "average q values",
                str(torch.mean(maxq_trainer.all_action_scores)),
            ]))

        # Q value should converge to very close to 100
        avg_q_value_after_training = torch.mean(maxq_trainer.all_action_scores)

        self.assertLess(avg_q_value_after_training, 101)
        self.assertGreater(avg_q_value_after_training, 99)
Esempio n. 8
0
    def test_pure_q_learning_all_cheat(self):
        q_learning_parameters = DiscreteActionModelParameters(
            actions=self._env.ACTIONS,
            rl=self._rl_parameters_all_cheat_maxq,
            training=TrainingParameters(
                layers=[self._env.width * self._env.height, 1],
                activations=['linear'],
                minibatch_size=self.minibatch_size,
                learning_rate=0.05,
                optimizer='SGD',
                lr_policy='fixed',
            )
        )

        trainer = DiscreteActionTrainer(
            q_learning_parameters,
            self._env.normalization,
        )

        predictor = trainer.predictor()

        policy = _build_policy(self._env, predictor, 1)
        initial_state = self._env.reset()
        iteration_result = _collect_samples(
            self._env, policy, 20000, initial_state
        )
        num_iterations = 50
        for _ in range(num_iterations):
            tdps = self._env.preprocess_samples(
                iteration_result.states,
                iteration_result.actions,
                iteration_result.rewards,
                iteration_result.next_states,
                iteration_result.next_actions,
                iteration_result.is_terminals,
                iteration_result.possible_next_actions,
                None,
                self.minibatch_size,
            )
            for tdp in tdps:
                trainer.train_numpy(tdp, None)
            initial_state = self._env.reset()
            policy = _build_policy(self._env, predictor, 0.1)
            iteration_result = _collect_samples(
                self._env, policy, 20000, initial_state
            )
        policy = _build_policy(self._env, predictor, 0)
        initial_state = self._env.reset()
        iteration_result = _collect_samples(
            self._env, policy, 1000, initial_state
        )
        # 100% should be cheat.  Will fix in the future.
        self.assertGreater(
            np.sum(np.array(iteration_result.actions) == 'C'), 800
        )
Esempio n. 9
0
def main(params):
    # Set minibatch size based on # of devices being used to train
    params["training"]["minibatch_size"] *= minibatch_size_multiplier(
        params["use_gpu"], params["use_all_avail_gpus"])

    rl_parameters = RLParameters(**params["rl"])
    training_parameters = TrainingParameters(**params["training"])
    rainbow_parameters = RainbowDQNParameters(**params["rainbow"])

    model_params = DiscreteActionModelParameters(
        actions=params["actions"],
        rl=rl_parameters,
        training=training_parameters,
        rainbow=rainbow_parameters,
    )
    state_normalization = BaseWorkflow.read_norm_file(
        params["state_norm_data_path"])

    writer = SummaryWriter(log_dir=params["model_output_path"])
    logger.info("TensorBoard logging location is: {}".format(writer.log_dir))

    preprocess_handler = DqnPreprocessHandler(
        Preprocessor(state_normalization, False),
        np.array(model_params.actions),
        PandasSparseToDenseProcessor(),
    )

    workflow = DqnWorkflow(
        model_params,
        preprocess_handler,
        state_normalization,
        params["use_gpu"],
        params["use_all_avail_gpus"],
    )

    train_dataset = JSONDatasetReader(
        params["training_data_path"],
        batch_size=training_parameters.minibatch_size)
    eval_dataset = JSONDatasetReader(params["eval_data_path"], batch_size=16)

    with summary_writer_context(writer):
        workflow.train_network(train_dataset, eval_dataset,
                               int(params["epochs"]))

    exporter = DQNExporter(
        workflow.trainer.q_network,
        PredictorFeatureExtractor(
            state_normalization_parameters=state_normalization),
        DiscreteActionOutputTransformer(model_params.actions),
    )

    return export_trainer_and_predictor(workflow.trainer,
                                        params["model_output_path"],
                                        exporter=exporter)  # noqa
Esempio n. 10
0
    def test_trainer_maxq(self):
        environment = Gridworld()
        maxq_sarsa_parameters = DiscreteActionModelParameters(
            actions=environment.ACTIONS,
            rl=RLParameters(
                gamma=DISCOUNT,
                target_update_rate=0.5,
                reward_burnin=10,
                maxq_learning=True,
            ),
            training=TrainingParameters(
                layers=[-1, 1],
                activations=["linear"],
                minibatch_size=self.minibatch_size,
                learning_rate=0.01,
                optimizer="ADAM",
            ),
        )
        # construct the new trainer that using maxq
        maxq_trainer = DiscreteActionTrainer(
            maxq_sarsa_parameters, environment.normalization
        )

        samples = environment.generate_samples(100000, 1.0)
        predictor = maxq_trainer.predictor()
        tdps = environment.preprocess_samples(samples, self.minibatch_size)
        evaluator = GridworldEvaluator(environment, True)

        evaluator.evaluate(predictor)
        print(
            "Pre-Training eval: ",
            evaluator.mc_loss[-1],
            evaluator.reward_doubly_robust[-1],
        )
        self.assertGreater(evaluator.mc_loss[-1], 0.3)

        for _ in range(5):
            for tdp in tdps:
                maxq_trainer.train_numpy(tdp, None)

        evaluator.evaluate(predictor)
        print(
            "Post-Training eval: ",
            evaluator.mc_loss[-1],
            evaluator.reward_doubly_robust[-1],
        )
        self.assertLess(evaluator.mc_loss[-1], 0.1)

        self.assertGreater(
            evaluator.reward_doubly_robust[-1], evaluator.reward_doubly_robust[-2]
        )
Esempio n. 11
0
    def test_trainer_maxq(self):
        environment = Gridworld()
        maxq_sarsa_parameters = DiscreteActionModelParameters(
            actions=environment.ACTIONS,
            rl=RLParameters(gamma=DISCOUNT,
                            target_update_rate=0.5,
                            reward_burnin=10,
                            maxq_learning=True),
            training=TrainingParameters(
                layers=[-1, 1],
                activations=['linear'],
                minibatch_size=self.minibatch_size,
                learning_rate=0.01,
                optimizer='ADAM',
            ))
        # construct the new trainer that using maxq
        maxq_trainer = DiscreteActionTrainer(
            maxq_sarsa_parameters,
            environment.normalization,
        )
        states, actions, rewards, next_states, next_actions, is_terminal,\
            possible_next_actions, reward_timelines = \
            environment.generate_samples(100000, 1.0)
        predictor = maxq_trainer.predictor()
        tdps = environment.preprocess_samples(
            states,
            actions,
            rewards,
            next_states,
            next_actions,
            is_terminal,
            possible_next_actions,
            reward_timelines,
            self.minibatch_size,
        )
        evaluator = GridworldEvaluator(environment, True)
        print("Pre-Training eval", evaluator.evaluate(predictor))
        self.assertGreater(evaluator.evaluate(predictor), 0.3)

        for _ in range(2):
            for tdp in tdps:
                maxq_trainer.stream_tdp(tdp, None)
            evaluator.evaluate(predictor)

        print("Post-Training eval", evaluator.evaluate(predictor))
        self.assertLess(evaluator.evaluate(predictor), 0.1)
Esempio n. 12
0
def train_network(params):
    logger.info("Running DQN workflow with params:")
    logger.info(params)

    action_names = np.array(params["actions"])
    rl_parameters = RLParameters(**params["rl"])
    training_parameters = TrainingParameters(**params["training"])
    rainbow_parameters = RainbowDQNParameters(**params["rainbow"])

    trainer_params = DiscreteActionModelParameters(
        actions=params["actions"],
        rl=rl_parameters,
        training=training_parameters,
        rainbow=rainbow_parameters,
    )

    dataset = JSONDataset(params["training_data_path"],
                          batch_size=training_parameters.minibatch_size)
    norm_data = JSONDataset(params["state_norm_data_path"])
    state_normalization = read_norm_params(norm_data.read_all())

    num_batches = int(len(dataset) / training_parameters.minibatch_size)

    logger.info("Read in batch data set {} of size {} examples. Data split "
                "into {} batches of size {}.".format(
                    params["training_data_path"],
                    len(dataset),
                    num_batches,
                    training_parameters.minibatch_size,
                ))

    trainer = DQNTrainer(trainer_params, state_normalization,
                         params["use_gpu"])

    for epoch in range(params["epochs"]):
        for batch_idx in range(num_batches):
            helpers.report_training_status(batch_idx, num_batches, epoch,
                                           params["epochs"])
            batch = dataset.read_batch(batch_idx)
            tdp = preprocess_batch_for_training(action_names, batch,
                                                state_normalization)
            trainer.train(tdp)

    logger.info("Training finished. Saving PyTorch model to {}".format(
        params["pytorch_output_path"]))
    helpers.save_model_to_file(trainer, params["pytorch_output_path"])
Esempio n. 13
0
 def get_sarsa_trainer(self, environment):
     rl_parameters = RLParameters(gamma=DISCOUNT,
                                  target_update_rate=0.5,
                                  reward_burnin=10,
                                  maxq_learning=False)
     training_parameters = TrainingParameters(
         layers=[-1, 1],
         activations=['linear'],
         minibatch_size=1024,
         learning_rate=0.01,
         optimizer='ADAM',
     )
     return DiscreteActionTrainer(
         environment.normalization,
         DiscreteActionModelParameters(actions=environment.ACTIONS,
                                       rl=rl_parameters,
                                       training=training_parameters))
Esempio n. 14
0
 def test_sarsa_layer_validation(self):
     env = Gridworld()
     invalid_sarsa_params = DiscreteActionModelParameters(
         actions=env.ACTIONS,
         rl=RLParameters(gamma=DISCOUNT,
                         target_update_rate=0.5,
                         reward_burnin=10,
                         maxq_learning=False),
         training=TrainingParameters(
             layers=[-1, 3],
             activations=['linear'],
             minibatch_size=32,
             learning_rate=0.1,
             optimizer='SGD',
         ))
     with self.assertRaises(Exception):
         # layers[-1] should be 1
         DiscreteActionTrainer(env.normalization, invalid_sarsa_params)
Esempio n. 15
0
def main(args):
    parser = argparse.ArgumentParser(
        description="Train a RL net to play in an OpenAI Gym environment.")
    parser.add_argument("-p",
                        "--parameters",
                        help="Path to JSON parameters file.")
    parser.add_argument("-s",
                        "--score-bar",
                        help="Bar for averaged tests scores.",
                        type=float,
                        default=None)
    parser.add_argument(
        "-g",
        "--gpu_id",
        help="If set, will use GPU with specified ID. Otherwise will use CPU.",
        default=USE_CPU)
    args = parser.parse_args(args)
    with open(args.parameters, 'r') as f:
        params = json.load(f)

    rl_settings = params['rl']
    training_settings = params['training']
    rl_settings['gamma'] = rl_settings['reward_discount_factor']
    del rl_settings['reward_discount_factor']
    training_settings['gamma'] = training_settings['learning_rate_decay']
    del training_settings['learning_rate_decay']

    env_type = params['env']
    env = OpenAIGymEnvironment(env_type, rl_settings['epsilon'])

    trainer_params = DiscreteActionModelParameters(
        actions=env.actions,
        rl=RLParameters(**rl_settings),
        training=TrainingParameters(**training_settings))

    device = core.DeviceOption(
        caffe2_pb2.CPU if args.gpu_id == USE_CPU else caffe2_pb2.CUDA,
        args.gpu_id)
    with core.DeviceScope(device):
        trainer = DiscreteActionTrainer(env.normalization,
                                        trainer_params,
                                        skip_normalization=True)
        return run(env, trainer, "{} test run".format(env_type),
                   args.score_bar, **params["run_details"])
    def test_pure_q_learning_all_cheat(self):
        q_learning_parameters = DiscreteActionModelParameters(
            actions=self._env.ACTIONS,
            rl=self._rl_parameters_all_cheat_maxq,
            training=TrainingParameters(
                layers=[self._env.width * self._env.height, 1],
                activations=['linear'],
                minibatch_size=32,
                learning_rate=0.05,
                optimizer='SGD',
                lr_policy='fixed'))

        trainer = DiscreteActionTrainer(self._env.normalization,
                                        q_learning_parameters)

        predictor = trainer.predictor()

        policy = _build_policy(self._env, predictor, 1)
        initial_state = self._env.reset()
        iteration_result = _collect_samples(self._env, policy, 10000,
                                            initial_state)
        num_iterations = 50
        for _ in range(num_iterations):
            policy = _build_policy(self._env, predictor, 0)

            tdp = self._env.preprocess_samples(
                iteration_result.states,
                iteration_result.actions,
                iteration_result.rewards,
                iteration_result.next_states,
                iteration_result.next_actions,
                iteration_result.is_terminals,
                iteration_result.possible_next_actions,
                None,
            )
            trainer.stream_tdp(tdp, None)
            initial_state = iteration_result.current_state
        initial_state = self._env.reset()
        iteration_result = _collect_samples(self._env, policy, 10000,
                                            initial_state)
        self.assertTrue(np.all(np.array(iteration_result.actions) == 'C'))
Esempio n. 17
0
 def get_sarsa_trainer_reward_boost(self, environment, reward_shape):
     rl_parameters = RLParameters(
         gamma=DISCOUNT,
         target_update_rate=0.5,
         reward_burnin=10,
         maxq_learning=False,
         reward_boost=reward_shape,
     )
     training_parameters = TrainingParameters(
         layers=[-1, -1],
         activations=["linear"],
         minibatch_size=self.minibatch_size,
         learning_rate=0.01,
         optimizer="ADAM",
     )
     return DiscreteActionTrainer(
         DiscreteActionModelParameters(
             actions=environment.ACTIONS,
             rl=rl_parameters,
             training=training_parameters,
         ),
         environment.normalization,
     )
    def test_trainer_maxq(self):
        env = Env(self.state_dims, self.action_dims)
        maxq_parameters = DiscreteActionModelParameters(
            actions=env.actions,
            rl=RLParameters(gamma=0.95,
                            target_update_rate=0.9,
                            maxq_learning=True),
            rainbow=RainbowDQNParameters(double_q_learning=True,
                                         dueling_architecture=False),
            training=TrainingParameters(
                layers=self.layers,
                activations=self.activations,
                minibatch_size=1024,
                learning_rate=0.25,
                optimizer="ADAM",
            ),
        )

        # Q value should converge to very close to 20
        trainer = self._train(maxq_parameters, env)
        avg_q_value_after_training = torch.mean(trainer.all_action_scores)
        self.assertLess(avg_q_value_after_training, 22)
        self.assertGreater(avg_q_value_after_training, 18)
Esempio n. 19
0
def run_gym(params, score_bar, gpu_id):
    rl_settings = params['rl']
    training_settings = params['training']
    rl_settings['gamma'] = rl_settings['reward_discount_factor']
    del rl_settings['reward_discount_factor']
    training_settings['gamma'] = training_settings['learning_rate_decay']
    del training_settings['learning_rate_decay']

    env_type = params['env']
    env = OpenAIGymEnvironment(env_type, rl_settings['epsilon'])
    trainer_params = DiscreteActionModelParameters(
        actions=env.actions,
        rl=RLParameters(**rl_settings),
        training=TrainingParameters(**training_settings))

    device = core.DeviceOption(
        caffe2_pb2.CPU if gpu_id == USE_CPU else caffe2_pb2.CUDA,
        gpu_id,
    )
    with core.DeviceScope(device):
        if env.img:
            trainer = DiscreteActionConvTrainer(
                DiscreteActionConvModelParameters(
                    fc_parameters=trainer_params,
                    cnn_parameters=CNNModelParameters(**params['cnn']),
                    num_input_channels=env.num_input_channels,
                    img_height=env.height,
                    img_width=env.width),
                env.normalization,
            )
        else:
            trainer = DiscreteActionTrainer(
                trainer_params,
                env.normalization,
            )
        return run(env, trainer, "{} test run".format(env_type), score_bar,
                   **params["run_details"])
Esempio n. 20
0
def run_gym(params, score_bar, gpu_id):
    rl_settings = params['rl']
    rl_settings['gamma'] = rl_settings['reward_discount_factor']
    del rl_settings['reward_discount_factor']

    env_type = params['env']
    env = OpenAIGymEnvironment(env_type, rl_settings['epsilon'])
    model_type = params['model_type']
    c2_device = core.DeviceOption(
        caffe2_pb2.CPU if gpu_id == USE_CPU else caffe2_pb2.CUDA,
        gpu_id,
    )

    if model_type == ModelType.DISCRETE_ACTION.value:
        with core.DeviceScope(c2_device):
            training_settings = params['training']
            training_settings['gamma'] = training_settings[
                'learning_rate_decay']
            del training_settings['learning_rate_decay']
            trainer_params = DiscreteActionModelParameters(
                actions=env.actions,
                rl=RLParameters(**rl_settings),
                training=TrainingParameters(**training_settings))
            if env.img:
                trainer = DiscreteActionConvTrainer(
                    DiscreteActionConvModelParameters(
                        fc_parameters=trainer_params,
                        cnn_parameters=CNNModelParameters(**params['cnn']),
                        num_input_channels=env.num_input_channels,
                        img_height=env.height,
                        img_width=env.width),
                    env.normalization,
                )
            else:
                trainer = DiscreteActionTrainer(
                    trainer_params,
                    env.normalization,
                )
    elif model_type == ModelType.PARAMETRIC_ACTION.value:
        with core.DeviceScope(c2_device):
            training_settings = params['training']
            training_settings['gamma'] = training_settings[
                'learning_rate_decay']
            del training_settings['learning_rate_decay']
            trainer_params = ContinuousActionModelParameters(
                rl=RLParameters(**rl_settings),
                training=TrainingParameters(**training_settings),
                knn=KnnParameters(model_type='DQN', ),
            )
            trainer = ContinuousActionDQNTrainer(trainer_params,
                                                 env.normalization,
                                                 env.normalization_action)
    elif model_type == ModelType.CONTINUOUS_ACTION.value:
        training_settings = params['shared_training']
        training_settings['gamma'] = training_settings['learning_rate_decay']
        del training_settings['learning_rate_decay']
        actor_settings = params['actor_training']
        critic_settings = params['critic_training']
        trainer_params = DDPGModelParameters(
            rl=DDPGRLParameters(**rl_settings),
            shared_training=DDPGTrainingParameters(**training_settings),
            actor_training=DDPGNetworkParameters(**actor_settings),
            critic_training=DDPGNetworkParameters(**critic_settings),
        )
        trainer = DDPGTrainer(
            trainer_params,
            EnvDetails(
                state_dim=env.state_dim,
                action_dim=env.action_dim,
                action_range=(env.action_space.low, env.action_space.high),
            ))
    else:
        raise NotImplementedError(
            "Model of type {} not supported".format(model_type))

    return run(env, model_type, trainer, "{} test run".format(env_type),
               score_bar, **params["run_details"])
Esempio n. 21
0
def create_trainer(model_type, params, rl_parameters, use_gpu, env):
    if model_type == ModelType.PYTORCH_DISCRETE_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (training_parameters.cnn_parameters
                    is not None), "Missing CNN parameters for image input"
            if isinstance(training_parameters.cnn_parameters, dict):
                training_parameters.cnn_parameters = CNNParameters(
                    **training_parameters.cnn_parameters)
            training_parameters.cnn_parameters.conv_dims[
                0] = env.num_input_channels
            training_parameters.cnn_parameters.input_height = env.height
            training_parameters.cnn_parameters.input_width = env.width
            training_parameters.cnn_parameters.num_input_channels = (
                env.num_input_channels)
        else:
            assert (training_parameters.cnn_parameters is
                    None), "Extra CNN parameters for non-image input"
        trainer_params = DiscreteActionModelParameters(
            actions=env.actions,
            rl=rl_parameters,
            training=training_parameters,
            rainbow=rainbow_parameters,
        )
        trainer = DQNTrainer(trainer_params, env.normalization, use_gpu)

    elif model_type == ModelType.PYTORCH_PARAMETRIC_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (training_parameters.cnn_parameters
                    is not None), "Missing CNN parameters for image input"
            training_parameters.cnn_parameters.conv_dims[
                0] = env.num_input_channels
        else:
            assert (training_parameters.cnn_parameters is
                    None), "Extra CNN parameters for non-image input"
        trainer_params = ContinuousActionModelParameters(
            rl=rl_parameters,
            training=training_parameters,
            rainbow=rainbow_parameters)
        trainer = ParametricDQNTrainer(trainer_params, env.normalization,
                                       env.normalization_action, use_gpu)
    elif model_type == ModelType.CONTINUOUS_ACTION.value:
        training_parameters = params["shared_training"]
        if isinstance(training_parameters, dict):
            training_parameters = DDPGTrainingParameters(**training_parameters)

        actor_parameters = params["actor_training"]
        if isinstance(actor_parameters, dict):
            actor_parameters = DDPGNetworkParameters(**actor_parameters)

        critic_parameters = params["critic_training"]
        if isinstance(critic_parameters, dict):
            critic_parameters = DDPGNetworkParameters(**critic_parameters)

        trainer_params = DDPGModelParameters(
            rl=rl_parameters,
            shared_training=training_parameters,
            actor_training=actor_parameters,
            critic_training=critic_parameters,
        )

        action_range_low = env.action_space.low.astype(np.float32)
        action_range_high = env.action_space.high.astype(np.float32)

        trainer = DDPGTrainer(
            trainer_params,
            env.normalization,
            env.normalization_action,
            torch.from_numpy(action_range_low).unsqueeze(dim=0),
            torch.from_numpy(action_range_high).unsqueeze(dim=0),
            use_gpu,
        )

    elif model_type == ModelType.SOFT_ACTOR_CRITIC.value:
        trainer_params = SACModelParameters(
            rl=rl_parameters,
            training=SACTrainingParameters(
                minibatch_size=params["sac_training"]["minibatch_size"],
                use_2_q_functions=params["sac_training"]["use_2_q_functions"],
                q_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["q_network_optimizer"]),
                value_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["value_network_optimizer"]),
                actor_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["actor_network_optimizer"]),
                entropy_temperature=params["sac_training"]
                ["entropy_temperature"],
            ),
            q_network=FeedForwardParameters(**params["sac_q_training"]),
            value_network=FeedForwardParameters(
                **params["sac_value_training"]),
            actor_network=FeedForwardParameters(
                **params["sac_actor_training"]),
        )
        trainer = get_sac_trainer(env, trainer_params, use_gpu)

    else:
        raise NotImplementedError(
            "Model of type {} not supported".format(model_type))

    return trainer
    def test_q_learning_limited(self):
        # TODO: This model oscilliates pretty bad, will investigate in the future.
        target_cheat_percentage = 50
        epsilon = 0.2
        num_iterations = 30
        self.minibatch_size = 1024
        num_steps = self.minibatch_size * 10
        updates_per_iteration = 1

        q_learning_parameters = DiscreteActionModelParameters(
            actions=self._env.ACTIONS,
            rl=self._rl_parameters_maxq,
            training=TrainingParameters(
                layers=[-1, -1],
                activations=["linear"],
                minibatch_size=self.minibatch_size,
                learning_rate=0.05,
                optimizer="ADAM",
            ),
            action_budget=ActionBudget(
                limited_action="C",
                action_limit=target_cheat_percentage,
                quantile_update_rate=0.2,
                quantile_update_frequency=1,
                window_size=1000,
            ),
        )

        trainer = LimitedActionDiscreteActionTrainer(q_learning_parameters,
                                                     self._env.normalization)

        predictor = trainer.predictor()

        policy = _build_policy(self._env, predictor, epsilon)
        initial_state = self._env.reset()
        for iteration in range(num_iterations):
            policy = _build_policy(self._env, predictor, epsilon)
            iteration_result = _collect_samples(self._env, policy, num_steps,
                                                initial_state)
            tdps = self._env.preprocess_samples(
                iteration_result.states,
                iteration_result.actions,
                iteration_result.propensities,
                iteration_result.rewards,
                iteration_result.next_states,
                iteration_result.next_actions,
                iteration_result.is_terminals,
                iteration_result.possible_next_actions,
                None,
                self.minibatch_size,
            )
            print("iter: {} ({}), ratio: {}, steps to solve: {}, quantile: {}".
                  format(
                      iteration,
                      num_steps,
                      iteration_result.cheat_ratio,
                      np.mean(iteration_result.lengths),
                      trainer.quantile_value,
                  ))
            initial_state = iteration_result.current_state
            for _ in range(updates_per_iteration):
                for tdp in tdps:
                    trainer.train_numpy(tdp, None)

        state = self._env.reset()
        evaluation_results = _collect_samples(self._env, policy, 10000, state)
        print(
            np.sum(np.array(evaluation_results.lengths) <= 14) /
            len(evaluation_results.lengths))
        optimality_ratio = np.sum(
            np.array(evaluation_results.lengths) <= 14) / len(
                evaluation_results.lengths)
        self.assertGreater(optimality_ratio, 0.5)
        accuracy = np.abs(evaluation_results.cheat_ratio -
                          target_cheat_percentage / 100)
        print("ACCURACY", evaluation_results.cheat_ratio,
              target_cheat_percentage)
        self.assertTrue(
            accuracy <
            0.4)  # TODO: Would like to get this accuracy up in the future
Esempio n. 23
0
def run_gym(params, score_bar, gpu_id, save_timesteps_to_dataset=None):
    logger.info("Running gym with params")
    logger.info(params)
    rl_parameters = RLParameters(**params["rl"])

    env_type = params["env"]
    env = OpenAIGymEnvironment(
        env_type,
        rl_parameters.epsilon,
        rl_parameters.softmax_policy,
        params["max_replay_memory_size"],
    )
    model_type = params["model_type"]
    c2_device = core.DeviceOption(
        caffe2_pb2.CPU if gpu_id == USE_CPU else caffe2_pb2.CUDA, gpu_id
    )

    if model_type == ModelType.DISCRETE_ACTION.value:
        with core.DeviceScope(c2_device):
            training_settings = params["training"]
            training_parameters = TrainingParameters(**training_settings)
            if env.img:
                assert (
                    training_parameters.cnn_parameters is not None
                ), "Missing CNN parameters for image input"
                training_parameters.cnn_parameters = CNNParameters(
                    **training_settings["cnn_parameters"]
                )
                training_parameters.cnn_parameters.conv_dims[0] = env.num_input_channels
                training_parameters.cnn_parameters.input_height = env.height
                training_parameters.cnn_parameters.input_width = env.width
                training_parameters.cnn_parameters.num_input_channels = (
                    env.num_input_channels
                )
            else:
                assert (
                    training_parameters.cnn_parameters is None
                ), "Extra CNN parameters for non-image input"
            trainer_params = DiscreteActionModelParameters(
                actions=env.actions, rl=rl_parameters, training=training_parameters
            )
            trainer = DiscreteActionTrainer(trainer_params, env.normalization)
    elif model_type == ModelType.PARAMETRIC_ACTION.value:
        with core.DeviceScope(c2_device):
            training_settings = params["training"]
            training_parameters = TrainingParameters(**training_settings)
            if env.img:
                assert (
                    training_parameters.cnn_parameters is not None
                ), "Missing CNN parameters for image input"
                training_parameters.cnn_parameters = CNNParameters(
                    **training_settings["cnn_parameters"]
                )
                training_parameters.cnn_parameters.conv_dims[0] = env.num_input_channels
            else:
                assert (
                    training_parameters.cnn_parameters is None
                ), "Extra CNN parameters for non-image input"
            trainer_params = ContinuousActionModelParameters(
                rl=rl_parameters,
                training=training_parameters,
                knn=KnnParameters(model_type="DQN"),
            )
            trainer = ContinuousActionDQNTrainer(
                trainer_params, env.normalization, env.normalization_action
            )
    elif model_type == ModelType.CONTINUOUS_ACTION.value:
        training_settings = params["shared_training"]
        actor_settings = params["actor_training"]
        critic_settings = params["critic_training"]
        trainer_params = DDPGModelParameters(
            rl=rl_parameters,
            shared_training=DDPGTrainingParameters(**training_settings),
            actor_training=DDPGNetworkParameters(**actor_settings),
            critic_training=DDPGNetworkParameters(**critic_settings),
        )

        # DDPG can handle continuous and discrete action spaces
        if env.action_type == EnvType.CONTINUOUS_ACTION:
            action_range = env.action_space.high
        else:
            action_range = None

        trainer = DDPGTrainer(
            trainer_params,
            env.normalization,
            env.normalization_action,
            use_gpu=False,
            action_range=action_range,
        )

    else:
        raise NotImplementedError("Model of type {} not supported".format(model_type))

    return run(
        c2_device,
        env,
        model_type,
        trainer,
        "{} test run".format(env_type),
        score_bar,
        **params["run_details"],
        save_timesteps_to_dataset=save_timesteps_to_dataset,
    )
Esempio n. 24
0
def train_network(params):
    writer = None
    if params["model_output_path"] is not None:
        writer = SummaryWriter(log_dir=params["model_output_path"])

    logger.info("Running DQN workflow with params:")
    logger.info(params)

    # Set minibatch size based on # of devices being used to train
    params["training"]["minibatch_size"] *= minibatch_size_multiplier(
        params["use_gpu"], params["use_all_avail_gpus"])

    action_names = np.array(params["actions"])
    rl_parameters = RLParameters(**params["rl"])
    training_parameters = TrainingParameters(**params["training"])
    rainbow_parameters = RainbowDQNParameters(**params["rainbow"])

    trainer_params = DiscreteActionModelParameters(
        actions=params["actions"],
        rl=rl_parameters,
        training=training_parameters,
        rainbow=rainbow_parameters,
    )

    dataset = JSONDataset(params["training_data_path"],
                          batch_size=training_parameters.minibatch_size)
    eval_dataset = JSONDataset(params["eval_data_path"], batch_size=16)
    state_normalization = read_norm_file(params["state_norm_data_path"])

    num_batches = int(len(dataset) / training_parameters.minibatch_size)
    logger.info("Read in batch data set {} of size {} examples. Data split "
                "into {} batches of size {}.".format(
                    params["training_data_path"],
                    len(dataset),
                    num_batches,
                    training_parameters.minibatch_size,
                ))

    trainer = DQNTrainer(
        trainer_params,
        state_normalization,
        use_gpu=params["use_gpu"],
        use_all_avail_gpus=params["use_all_avail_gpus"],
    )
    trainer = update_model_for_warm_start(trainer)
    preprocessor = Preprocessor(state_normalization, False)

    evaluator = Evaluator(
        trainer_params.actions,
        trainer_params.rl.gamma,
        trainer,
        metrics_to_score=trainer.metrics_to_score,
    )

    start_time = time.time()
    for epoch in range(int(params["epochs"])):
        dataset.reset_iterator()
        for batch_idx in range(num_batches):
            report_training_status(batch_idx, num_batches, epoch,
                                   int(params["epochs"]))
            batch = dataset.read_batch(batch_idx)
            tdp = preprocess_batch_for_training(preprocessor, batch,
                                                action_names)

            tdp.set_type(trainer.dtype)
            trainer.train(tdp)

        eval_dataset.reset_iterator()
        accumulated_edp = None
        while True:
            batch = eval_dataset.read_batch(batch_idx)
            if batch is None:
                break
            tdp = preprocess_batch_for_training(preprocessor, batch,
                                                action_names)
            edp = EvaluationDataPage.create_from_tdp(tdp, trainer)
            if accumulated_edp is None:
                accumulated_edp = edp
            else:
                accumulated_edp = accumulated_edp.append(edp)
        accumulated_edp = accumulated_edp.compute_values(trainer.gamma)

        cpe_start_time = time.time()
        details = evaluator.evaluate_post_training(accumulated_edp)
        details.log()
        logger.info("CPE evaluation took {} seconds.".format(time.time() -
                                                             cpe_start_time))

    through_put = (len(dataset) * int(params["epochs"])) / (time.time() -
                                                            start_time)
    logger.info("Training finished. Processed ~{} examples / s.".format(
        round(through_put)))

    if writer is not None:
        writer.close()

    return export_trainer_and_predictor(trainer, params["model_output_path"])
Esempio n. 25
0
def create_trainer(model_type, params, rl_parameters, use_gpu, env):
    if model_type == ModelType.PYTORCH_DISCRETE_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (
                training_parameters.cnn_parameters is not None
            ), "Missing CNN parameters for image input"
            if isinstance(training_parameters.cnn_parameters, dict):
                training_parameters.cnn_parameters = CNNParameters(
                    **training_parameters.cnn_parameters
                )
            training_parameters.cnn_parameters.conv_dims[0] = env.num_input_channels
            training_parameters.cnn_parameters.input_height = env.height
            training_parameters.cnn_parameters.input_width = env.width
            training_parameters.cnn_parameters.num_input_channels = (
                env.num_input_channels
            )
        else:
            assert (
                training_parameters.cnn_parameters is None
            ), "Extra CNN parameters for non-image input"
        trainer_params = DiscreteActionModelParameters(
            actions=env.actions,
            rl=rl_parameters,
            training=training_parameters,
            rainbow=rainbow_parameters,
        )
        trainer = create_dqn_trainer_from_params(
            trainer_params, env.normalization, use_gpu
        )

    elif model_type == ModelType.PYTORCH_PARAMETRIC_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (
                training_parameters.cnn_parameters is not None
            ), "Missing CNN parameters for image input"
            training_parameters.cnn_parameters.conv_dims[0] = env.num_input_channels
        else:
            assert (
                training_parameters.cnn_parameters is None
            ), "Extra CNN parameters for non-image input"
        trainer_params = ContinuousActionModelParameters(
            rl=rl_parameters, training=training_parameters, rainbow=rainbow_parameters
        )
        trainer = create_parametric_dqn_trainer_from_params(
            trainer_params, env.normalization, env.normalization_action, use_gpu
        )

    elif model_type == ModelType.TD3.value:
        trainer_params = TD3ModelParameters(
            rl=rl_parameters,
            training=TD3TrainingParameters(
                minibatch_size=params["td3_training"]["minibatch_size"],
                q_network_optimizer=OptimizerParameters(
                    **params["td3_training"]["q_network_optimizer"]
                ),
                actor_network_optimizer=OptimizerParameters(
                    **params["td3_training"]["actor_network_optimizer"]
                ),
                use_2_q_functions=params["td3_training"]["use_2_q_functions"],
                exploration_noise=params["td3_training"]["exploration_noise"],
                initial_exploration_ts=params["td3_training"]["initial_exploration_ts"],
                target_policy_smoothing=params["td3_training"][
                    "target_policy_smoothing"
                ],
                noise_clip=params["td3_training"]["noise_clip"],
                delayed_policy_update=params["td3_training"]["delayed_policy_update"],
            ),
            q_network=FeedForwardParameters(**params["td3_q_training"]),
            actor_network=FeedForwardParameters(**params["td3_actor_training"]),
        )
        trainer = get_td3_trainer(env, trainer_params, use_gpu)

    elif model_type == ModelType.SOFT_ACTOR_CRITIC.value:
        value_network = None
        value_network_optimizer = None
        alpha_optimizer = None
        if params["sac_training"]["use_value_network"]:
            value_network = FeedForwardParameters(**params["sac_value_training"])
            value_network_optimizer = OptimizerParameters(
                **params["sac_training"]["value_network_optimizer"]
            )
        if "alpha_optimizer" in params["sac_training"]:
            alpha_optimizer = OptimizerParameters(
                **params["sac_training"]["alpha_optimizer"]
            )
        entropy_temperature = params["sac_training"].get("entropy_temperature", None)
        target_entropy = params["sac_training"].get("target_entropy", None)

        trainer_params = SACModelParameters(
            rl=rl_parameters,
            training=SACTrainingParameters(
                minibatch_size=params["sac_training"]["minibatch_size"],
                use_2_q_functions=params["sac_training"]["use_2_q_functions"],
                use_value_network=params["sac_training"]["use_value_network"],
                q_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["q_network_optimizer"]
                ),
                value_network_optimizer=value_network_optimizer,
                actor_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["actor_network_optimizer"]
                ),
                entropy_temperature=entropy_temperature,
                target_entropy=target_entropy,
                alpha_optimizer=alpha_optimizer,
            ),
            q_network=FeedForwardParameters(**params["sac_q_training"]),
            value_network=value_network,
            actor_network=FeedForwardParameters(**params["sac_actor_training"]),
        )
        trainer = get_sac_trainer(env, trainer_params, use_gpu)

    else:
        raise NotImplementedError("Model of type {} not supported".format(model_type))

    return trainer
Esempio n. 26
0
def train_network(params):
    writer = None
    if params["model_output_path"] is not None:
        writer = SummaryWriter(
            log_dir=os.path.join(
                os.path.expanduser(params["model_output_path"]), "training_data"
            )
        )

    logger.info("Running DQN workflow with params:")
    logger.info(params)

    action_names = np.array(params["actions"])
    rl_parameters = RLParameters(**params["rl"])
    training_parameters = TrainingParameters(**params["training"])
    rainbow_parameters = RainbowDQNParameters(**params["rainbow"])
    if params["in_training_cpe"] is not None:
        in_training_cpe_parameters = InTrainingCPEParameters(
            **params["in_training_cpe"]
        )
    else:
        in_training_cpe_parameters = None

    trainer_params = DiscreteActionModelParameters(
        actions=params["actions"],
        rl=rl_parameters,
        training=training_parameters,
        rainbow=rainbow_parameters,
        in_training_cpe=in_training_cpe_parameters,
    )

    dataset = JSONDataset(
        params["training_data_path"], batch_size=training_parameters.minibatch_size
    )
    state_normalization = read_norm_file(params["state_norm_data_path"])

    num_batches = int(len(dataset) / training_parameters.minibatch_size)
    logger.info(
        "Read in batch data set {} of size {} examples. Data split "
        "into {} batches of size {}.".format(
            params["training_data_path"],
            len(dataset),
            num_batches,
            training_parameters.minibatch_size,
        )
    )

    trainer = DQNTrainer(trainer_params, state_normalization, params["use_gpu"])
    trainer = update_model_for_warm_start(trainer)
    preprocessor = Preprocessor(state_normalization, params["use_gpu"])

    if trainer_params.in_training_cpe is not None:
        evaluator = Evaluator(
            trainer_params.actions,
            10,
            trainer_params.rl.gamma,
            trainer,
            trainer_params.in_training_cpe.mdp_sampled_rate,
        )
    else:
        evaluator = Evaluator(
            trainer_params.actions,
            10,
            trainer_params.rl.gamma,
            trainer,
            float(DEFAULT_NUM_SAMPLES_FOR_CPE) / len(dataset),
        )

    start_time = time.time()
    for epoch in range(int(params["epochs"])):
        for batch_idx in range(num_batches):
            report_training_status(batch_idx, num_batches, epoch, int(params["epochs"]))
            batch = dataset.read_batch(batch_idx)
            tdp = preprocess_batch_for_training(preprocessor, batch, action_names)

            trainer.train(tdp)

            trainer.evaluate(
                evaluator, tdp.actions, None, tdp.rewards, tdp.episode_values
            )

            evaluator.collect_discrete_action_samples(
                mdp_ids=tdp.mdp_ids,
                sequence_numbers=tdp.sequence_numbers.cpu().numpy(),
                states=tdp.states.cpu().numpy(),
                logged_actions=tdp.actions.cpu().numpy(),
                logged_rewards=tdp.rewards.cpu().numpy(),
                logged_propensities=tdp.propensities.cpu().numpy(),
                logged_terminals=np.invert(
                    tdp.not_terminals.cpu().numpy().astype(np.bool)
                ),
            )

        cpe_start_time = time.time()
        evaluator.recover_samples_to_be_unshuffled()
        evaluator.score_cpe()
        if writer is not None:
            evaluator.log_to_tensorboard(writer, epoch)
        evaluator.clear_collected_samples()
        logger.info(
            "CPE evaluation took {} seconds.".format(time.time() - cpe_start_time)
        )

    through_put = (len(dataset) * int(params["epochs"])) / (time.time() - start_time)
    logger.info(
        "Training finished. Processed ~{} examples / s.".format(round(through_put))
    )

    if writer is not None:
        writer.close()

    return export_trainer_and_predictor(trainer, params["model_output_path"])
Esempio n. 27
0
def run_gym(
    params,
    score_bar,
    gpu_id,
    save_timesteps_to_dataset=None,
    start_saving_from_episode=0,
    batch_rl_file_path=None,
):

    # Caffe2 core uses the min of caffe2_log_level and minloglevel
    # to determine loglevel. See caffe2/caffe2/core/logging.cc for more info.
    core.GlobalInit(["caffe2", "--caffe2_log_level=2", "--minloglevel=2"])

    logger.info("Running gym with params")
    logger.info(params)
    rl_parameters = RLParameters(**params["rl"])

    env_type = params["env"]
    env = OpenAIGymEnvironment(
        env_type,
        rl_parameters.epsilon,
        rl_parameters.softmax_policy,
        params["max_replay_memory_size"],
        rl_parameters.gamma,
    )
    model_type = params["model_type"]
    c2_device = core.DeviceOption(
        caffe2_pb2.CPU if gpu_id == USE_CPU else caffe2_pb2.CUDA, gpu_id)
    use_gpu = gpu_id != USE_CPU

    if model_type == ModelType.PYTORCH_DISCRETE_DQN.value:
        training_settings = params["training"]
        training_parameters = TrainingParameters(**training_settings)
        if env.img:
            assert (training_parameters.cnn_parameters
                    is not None), "Missing CNN parameters for image input"
            training_parameters.cnn_parameters = CNNParameters(
                **training_settings["cnn_parameters"])
            training_parameters.cnn_parameters.conv_dims[
                0] = env.num_input_channels
            training_parameters.cnn_parameters.input_height = env.height
            training_parameters.cnn_parameters.input_width = env.width
            training_parameters.cnn_parameters.num_input_channels = (
                env.num_input_channels)
        else:
            assert (training_parameters.cnn_parameters is
                    None), "Extra CNN parameters for non-image input"
        trainer_params = DiscreteActionModelParameters(
            actions=env.actions,
            rl=rl_parameters,
            training=training_parameters)
        trainer = DQNTrainer(trainer_params, env.normalization, use_gpu)

    elif model_type == ModelType.DISCRETE_ACTION.value:
        with core.DeviceScope(c2_device):
            training_settings = params["training"]
            training_parameters = TrainingParameters(**training_settings)
            if env.img:
                assert (training_parameters.cnn_parameters
                        is not None), "Missing CNN parameters for image input"
                training_parameters.cnn_parameters = CNNParameters(
                    **training_settings["cnn_parameters"])
                training_parameters.cnn_parameters.conv_dims[
                    0] = env.num_input_channels
                training_parameters.cnn_parameters.input_height = env.height
                training_parameters.cnn_parameters.input_width = env.width
                training_parameters.cnn_parameters.num_input_channels = (
                    env.num_input_channels)
            else:
                assert (training_parameters.cnn_parameters is
                        None), "Extra CNN parameters for non-image input"
            trainer_params = DiscreteActionModelParameters(
                actions=env.actions,
                rl=rl_parameters,
                training=training_parameters)
            trainer = DiscreteActionTrainer(trainer_params, env.normalization)
    elif model_type == ModelType.PYTORCH_PARAMETRIC_DQN.value:
        training_settings = params["training"]
        training_parameters = TrainingParameters(**training_settings)
        if env.img:
            assert (training_parameters.cnn_parameters
                    is not None), "Missing CNN parameters for image input"
            training_parameters.cnn_parameters = CNNParameters(
                **training_settings["cnn_parameters"])
            training_parameters.cnn_parameters.conv_dims[
                0] = env.num_input_channels
        else:
            assert (training_parameters.cnn_parameters is
                    None), "Extra CNN parameters for non-image input"
        trainer_params = ContinuousActionModelParameters(
            rl=rl_parameters,
            training=training_parameters,
            knn=KnnParameters(model_type="DQN"),
        )
        trainer = ParametricDQNTrainer(trainer_params, env.normalization,
                                       env.normalization_action, use_gpu)
    elif model_type == ModelType.PARAMETRIC_ACTION.value:
        with core.DeviceScope(c2_device):
            training_settings = params["training"]
            training_parameters = TrainingParameters(**training_settings)
            if env.img:
                assert (training_parameters.cnn_parameters
                        is not None), "Missing CNN parameters for image input"
                training_parameters.cnn_parameters = CNNParameters(
                    **training_settings["cnn_parameters"])
                training_parameters.cnn_parameters.conv_dims[
                    0] = env.num_input_channels
            else:
                assert (training_parameters.cnn_parameters is
                        None), "Extra CNN parameters for non-image input"
            trainer_params = ContinuousActionModelParameters(
                rl=rl_parameters,
                training=training_parameters,
                knn=KnnParameters(model_type="DQN"),
            )
            trainer = ContinuousActionDQNTrainer(trainer_params,
                                                 env.normalization,
                                                 env.normalization_action)
    elif model_type == ModelType.CONTINUOUS_ACTION.value:
        training_settings = params["shared_training"]
        actor_settings = params["actor_training"]
        critic_settings = params["critic_training"]
        trainer_params = DDPGModelParameters(
            rl=rl_parameters,
            shared_training=DDPGTrainingParameters(**training_settings),
            actor_training=DDPGNetworkParameters(**actor_settings),
            critic_training=DDPGNetworkParameters(**critic_settings),
        )

        action_range_low = env.action_space.low.astype(np.float32)
        action_range_high = env.action_space.high.astype(np.float32)

        trainer = DDPGTrainer(
            trainer_params,
            env.normalization,
            env.normalization_action,
            torch.from_numpy(action_range_low).unsqueeze(dim=0),
            torch.from_numpy(action_range_high).unsqueeze(dim=0),
            use_gpu,
        )

    else:
        raise NotImplementedError(
            "Model of type {} not supported".format(model_type))

    return run(
        c2_device,
        env,
        model_type,
        trainer,
        "{} test run".format(env_type),
        score_bar,
        **params["run_details"],
        save_timesteps_to_dataset=save_timesteps_to_dataset,
        start_saving_from_episode=start_saving_from_episode,
        batch_rl_file_path=batch_rl_file_path,
    )
Esempio n. 28
0
def single_process_main(gpu_index, *args):
    params = args[0]
    # Set minibatch size based on # of devices being used to train
    params["training"]["minibatch_size"] *= minibatch_size_multiplier(
        params["use_gpu"], params["use_all_avail_gpus"]
    )

    action_names = params["actions"]

    rl_parameters = RLParameters(**params["rl"])
    training_parameters = TrainingParameters(**params["training"])
    rainbow_parameters = RainbowDQNParameters(**params["rainbow"])

    model_params = DiscreteActionModelParameters(
        actions=action_names,
        rl=rl_parameters,
        training=training_parameters,
        rainbow=rainbow_parameters,
    )
    state_normalization = BaseWorkflow.read_norm_file(params["state_norm_data_path"])

    writer = SummaryWriter(log_dir=params["model_output_path"])
    logger.info("TensorBoard logging location is: {}".format(writer.log_dir))

    if params["use_all_avail_gpus"]:
        BaseWorkflow.init_multiprocessing(
            int(params["num_processes_per_node"]),
            int(params["num_nodes"]),
            int(params["node_index"]),
            gpu_index,
            params["init_method"],
        )

    workflow = DqnWorkflow(
        model_params,
        state_normalization,
        params["use_gpu"],
        params["use_all_avail_gpus"],
    )

    sorted_features, _ = sort_features_by_normalization(state_normalization)
    preprocess_handler = DiscreteDqnPreprocessHandler(
        action_names, PandasSparseToDenseProcessor(sorted_features)
    )

    train_dataset = JSONDatasetReader(
        params["training_data_path"],
        batch_size=training_parameters.minibatch_size,
        preprocess_handler=preprocess_handler,
    )
    eval_dataset = JSONDatasetReader(
        params["eval_data_path"],
        batch_size=training_parameters.minibatch_size,
        preprocess_handler=preprocess_handler,
    )

    with summary_writer_context(writer):
        workflow.train_network(train_dataset, eval_dataset, int(params["epochs"]))

    exporter = DQNExporter(
        workflow.trainer.q_network,
        PredictorFeatureExtractor(state_normalization_parameters=state_normalization),
        DiscreteActionOutputTransformer(model_params.actions),
    )

    if int(params["node_index"]) == 0 and gpu_index == 0:
        export_trainer_and_predictor(
            workflow.trainer, params["model_output_path"], exporter=exporter
        )  # noqa
Esempio n. 29
0
def create_park_trainer(model_type, params, rl_parameters, use_gpu, env):
    if model_type == ModelType.PYTORCH_DISCRETE_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (training_parameters.cnn_parameters
                    is not None), "Missing CNN parameters for image input"
            if isinstance(training_parameters.cnn_parameters, dict):
                training_parameters.cnn_parameters = CNNParameters(
                    **training_parameters.cnn_parameters)
            training_parameters.cnn_parameters.conv_dims[
                0] = env.num_input_channels
            training_parameters.cnn_parameters.input_height = env.height
            training_parameters.cnn_parameters.input_width = env.width
            training_parameters.cnn_parameters.num_input_channels = (
                env.num_input_channels)
        else:
            assert (training_parameters.cnn_parameters is
                    None), "Extra CNN parameters for non-image input"
        trainer_params = DiscreteActionModelParameters(
            actions=env.actions,
            rl=rl_parameters,
            training=training_parameters,
            rainbow=rainbow_parameters,
        )
        trainer = create_park_dqn_trainer_from_params(
            model=trainer_params,
            normalization_parameters=env.normalization,
            use_gpu=use_gpu,
            env=env.env)
    elif model_type == ModelType.PYTORCH_PARAMETRIC_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (training_parameters.cnn_parameters
                    is not None), "Missing CNN parameters for image input"
            training_parameters.cnn_parameters.conv_dims[
                0] = env.num_input_channels
        else:
            assert (training_parameters.cnn_parameters is
                    None), "Extra CNN parameters for non-image input"
        trainer_params = ContinuousActionModelParameters(
            rl=rl_parameters,
            training=training_parameters,
            rainbow=rainbow_parameters)
        trainer = create_parametric_dqn_trainer_from_params(
            trainer_params,
            env.normalization,
            env.normalization_action,
            use_gpu,
            env=env.env)
    elif model_type == ModelType.CONTINUOUS_ACTION.value:
        training_parameters = params["shared_training"]
        if isinstance(training_parameters, dict):
            training_parameters = DDPGTrainingParameters(**training_parameters)

        actor_parameters = params["actor_training"]
        if isinstance(actor_parameters, dict):
            actor_parameters = DDPGNetworkParameters(**actor_parameters)

        critic_parameters = params["critic_training"]
        if isinstance(critic_parameters, dict):
            critic_parameters = DDPGNetworkParameters(**critic_parameters)

        trainer_params = DDPGModelParameters(
            rl=rl_parameters,
            shared_training=training_parameters,
            actor_training=actor_parameters,
            critic_training=critic_parameters,
        )

        action_range_low = env.action_space.low.astype(np.float32)
        action_range_high = env.action_space.high.astype(np.float32)

        state_dim = get_num_output_features(env.normalization)
        action_dim = get_num_output_features(env.normalization_action)

        # Build Actor Network
        actor_network = ActorNetModel(
            layers=([state_dim] + trainer_params.actor_training.layers[1:-1] +
                    [action_dim]),
            activations=trainer_params.actor_training.activations,
            fl_init=trainer_params.shared_training.final_layer_init,
            state_dim=state_dim,
            action_dim=action_dim,
            use_gpu=use_gpu,
            use_all_avail_gpus=False,
        )

        # Build Critic Network
        critic_network = CriticNetModel(
            # Ensure dims match input state and scalar output
            layers=[state_dim] + \
            trainer_params.critic_training.layers[1:-1] + [1],
            activations=trainer_params.critic_training.activations,
            fl_init=trainer_params.shared_training.final_layer_init,
            state_dim=state_dim,
            action_dim=action_dim,
            use_gpu=use_gpu,
            use_all_avail_gpus=False,
        )

        trainer = DDPGTrainer(
            actor_network,
            critic_network,
            trainer_params,
            env.normalization,
            env.normalization_action,
            torch.from_numpy(action_range_low).unsqueeze(dim=0),
            torch.from_numpy(action_range_high).unsqueeze(dim=0),
            use_gpu,
        )

    elif model_type == ModelType.SOFT_ACTOR_CRITIC.value:
        value_network = None
        value_network_optimizer = None
        if params["sac_training"]["use_value_network"]:
            value_network = FeedForwardParameters(
                **params["sac_value_training"])
            value_network_optimizer = OptimizerParameters(
                **params["sac_training"]["value_network_optimizer"])

        trainer_params = SACModelParameters(
            rl=rl_parameters,
            training=SACTrainingParameters(
                minibatch_size=params["sac_training"]["minibatch_size"],
                use_2_q_functions=params["sac_training"]["use_2_q_functions"],
                use_value_network=params["sac_training"]["use_value_network"],
                q_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["q_network_optimizer"]),
                value_network_optimizer=value_network_optimizer,
                actor_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["actor_network_optimizer"]),
                entropy_temperature=params["sac_training"]
                ["entropy_temperature"],
            ),
            q_network=FeedForwardParameters(**params["sac_q_training"]),
            value_network=value_network,
            actor_network=FeedForwardParameters(
                **params["sac_actor_training"]),
        )
        trainer = horizon_runner.get_sac_trainer(env, trainer_params, use_gpu)

    else:
        raise NotImplementedError(
            "Model of type {} not supported".format(model_type))

    return trainer
Esempio n. 30
0
def create_trainer(model_type, params, rl_parameters, use_gpu, env):
    c2_device = core.DeviceOption(caffe2_pb2.CUDA if use_gpu else caffe2_pb2.CPU)

    if model_type == ModelType.PYTORCH_DISCRETE_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (
                training_parameters.cnn_parameters is not None
            ), "Missing CNN parameters for image input"
            training_parameters.cnn_parameters.conv_dims[0] = env.num_input_channels
            training_parameters.cnn_parameters.input_height = env.height
            training_parameters.cnn_parameters.input_width = env.width
            training_parameters.cnn_parameters.num_input_channels = (
                env.num_input_channels
            )
        else:
            assert (
                training_parameters.cnn_parameters is None
            ), "Extra CNN parameters for non-image input"
        trainer_params = DiscreteActionModelParameters(
            actions=env.actions,
            rl=rl_parameters,
            training=training_parameters,
            rainbow=rainbow_parameters,
        )
        trainer = DQNTrainer(trainer_params, env.normalization, use_gpu)

    elif model_type == ModelType.DISCRETE_ACTION.value:
        with core.DeviceScope(c2_device):
            training_parameters = params["training"]
            if isinstance(training_parameters, dict):
                training_parameters = TrainingParameters(**training_parameters)
            if env.img:
                assert (
                    training_parameters.cnn_parameters is not None
                ), "Missing CNN parameters for image input"
                training_parameters.cnn_parameters.conv_dims[0] = env.num_input_channels
                training_parameters.cnn_parameters.input_height = env.height
                training_parameters.cnn_parameters.input_width = env.width
                training_parameters.cnn_parameters.num_input_channels = (
                    env.num_input_channels
                )
            else:
                assert (
                    training_parameters.cnn_parameters is None
                ), "Extra CNN parameters for non-image input"
            trainer_params = DiscreteActionModelParameters(
                actions=env.actions, rl=rl_parameters, training=training_parameters
            )
            trainer = DiscreteActionTrainer(trainer_params, env.normalization)
    elif model_type == ModelType.PYTORCH_PARAMETRIC_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (
                training_parameters.cnn_parameters is not None
            ), "Missing CNN parameters for image input"
            training_parameters.cnn_parameters.conv_dims[0] = env.num_input_channels
        else:
            assert (
                training_parameters.cnn_parameters is None
            ), "Extra CNN parameters for non-image input"
        trainer_params = ContinuousActionModelParameters(
            rl=rl_parameters,
            training=training_parameters,
            knn=KnnParameters(model_type="DQN"),
            rainbow=rainbow_parameters,
        )
        trainer = ParametricDQNTrainer(
            trainer_params, env.normalization, env.normalization_action, use_gpu
        )
    elif model_type == ModelType.PARAMETRIC_ACTION.value:
        with core.DeviceScope(c2_device):
            training_parameters = params["training"]
            if isinstance(training_parameters, dict):
                training_parameters = TrainingParameters(**training_parameters)
            if env.img:
                assert (
                    training_parameters.cnn_parameters is not None
                ), "Missing CNN parameters for image input"
                training_parameters.cnn_parameters.conv_dims[0] = env.num_input_channels
            else:
                assert (
                    training_parameters.cnn_parameters is None
                ), "Extra CNN parameters for non-image input"
            trainer_params = ContinuousActionModelParameters(
                rl=rl_parameters,
                training=training_parameters,
                knn=KnnParameters(model_type="DQN"),
            )
            trainer = ContinuousActionDQNTrainer(
                trainer_params, env.normalization, env.normalization_action
            )
    elif model_type == ModelType.CONTINUOUS_ACTION.value:
        training_parameters = params["shared_training"]
        if isinstance(training_parameters, dict):
            training_parameters = DDPGTrainingParameters(**training_parameters)

        actor_parameters = params["actor_training"]
        if isinstance(actor_parameters, dict):
            actor_parameters = DDPGNetworkParameters(**actor_parameters)

        critic_parameters = params["critic_training"]
        if isinstance(critic_parameters, dict):
            critic_parameters = DDPGNetworkParameters(**critic_parameters)

        trainer_params = DDPGModelParameters(
            rl=rl_parameters,
            shared_training=training_parameters,
            actor_training=actor_parameters,
            critic_training=critic_parameters,
        )

        action_range_low = env.action_space.low.astype(np.float32)
        action_range_high = env.action_space.high.astype(np.float32)

        trainer = DDPGTrainer(
            trainer_params,
            env.normalization,
            env.normalization_action,
            torch.from_numpy(action_range_low).unsqueeze(dim=0),
            torch.from_numpy(action_range_high).unsqueeze(dim=0),
            use_gpu,
        )

    else:
        raise NotImplementedError("Model of type {} not supported".format(model_type))

    return trainer