Esempio n. 1
0
 def input_prototype(self):
     return rlt.PreprocessedState(
         state=rlt.FeatureVector(
             float_features=torch.randn(1, self.state_dim),
             sequence_features=SequenceFeatures.prototype(),
         )
     )
Esempio n. 2
0
 def get_detached_q_values(
         self, state
 ) -> Tuple[rlt.AllActionQValues, Optional[rlt.AllActionQValues]]:
     """ Gets the q values from the model and target networks """
     input = rlt.PreprocessedState(state=state)
     q_values = self.q_network(input).q_values
     q_values_target = self.q_network_target(input).q_values
     return q_values, q_values_target
 def input_prototype(self):
     return rlt.PreprocessedState(state=rlt.PreprocessedFeatureVector(
         float_features=torch.randn(1, self.state_dim),
         id_list_features={
             k: (
                 torch.zeros(1, dtype=torch.long),
                 torch.ones(1, dtype=torch.long),
             )
             for k in self.embedding_bags
         },
     ))
Esempio n. 4
0
 def input_prototype(self):
     return rlt.PreprocessedState(
         state=rlt.FeatureVector(
             float_features=torch.randn(1, self.state_dim),
             id_list_features={
                 "page_id": (
                     torch.zeros(1, dtype=torch.long),
                     torch.ones(1, dtype=torch.long),
                 )
             },
         )
     )
Esempio n. 5
0
 def internal_prediction(
     self, state: torch.Tensor
 ) -> Union[rlt.SacPolicyActionSet, rlt.DqnPolicyActionSet]:
     """
     Only used by Gym. Return the predicted next action
     """
     input = rlt.PreprocessedState(state=rlt.PreprocessedFeatureVector(
         float_features=state))
     output = self.cem_planner_network(input)
     if not self.cem_planner_network.discrete_action:
         return rlt.SacPolicyActionSet(greedy=output, greedy_propensity=1.0)
     return rlt.DqnPolicyActionSet(greedy=output[0])
    def test_discrete_wrapper_with_id_list(self):
        state_normalization_parameters = {i: _cont_norm() for i in range(1, 5)}
        state_preprocessor = Preprocessor(state_normalization_parameters,
                                          False)
        action_dim = 2
        state_feature_config = rlt.ModelFeatureConfig(
            float_feature_infos=[
                rlt.FloatFeatureInfo(name=str(i), feature_id=i)
                for i in range(1, 5)
            ],
            id_list_feature_configs=[
                rlt.IdListFeatureConfig(name="A",
                                        feature_id=10,
                                        id_mapping_name="A_mapping")
            ],
            id_mapping_config={"A_mapping": rlt.IdMapping(ids=[0, 1, 2])},
        )
        dqn = FullyConnectedDQNWithEmbedding(
            state_dim=len(state_normalization_parameters),
            action_dim=action_dim,
            sizes=[16],
            activations=["relu"],
            model_feature_config=state_feature_config,
            embedding_dim=8,
        )
        dqn_with_preprocessor = DiscreteDqnWithPreprocessorWithIdList(
            dqn, state_preprocessor, state_feature_config)
        action_names = ["L", "R"]
        wrapper = DiscreteDqnPredictorWrapperWithIdList(
            dqn_with_preprocessor, action_names, state_feature_config)
        input_prototype = dqn_with_preprocessor.input_prototype()
        output_action_names, q_values = wrapper(*input_prototype)
        self.assertEqual(action_names, output_action_names)
        self.assertEqual(q_values.shape, (1, 2))

        feature_id_to_name = {
            config.feature_id: config.name
            for config in state_feature_config.id_list_feature_configs
        }
        state_id_list_features = {
            feature_id_to_name[k]: v
            for k, v in input_prototype[1].items()
        }
        expected_output = dqn(
            rlt.PreprocessedState(state=rlt.PreprocessedFeatureVector(
                float_features=state_preprocessor(*input_prototype[0]),
                id_list_features=state_id_list_features,
            ))).q_values
        self.assertTrue((expected_output == q_values).all())
 def forward(
     self,
     state_with_presence: Tuple[torch.Tensor, torch.Tensor],
     state_id_list_features: Dict[int, Tuple[torch.Tensor, torch.Tensor]],
 ):
     preprocessed_state = self.state_preprocessor(state_with_presence[0],
                                                  state_with_presence[1])
     id_list_features = {
         id_list_feature_config.name:
         state_id_list_features[id_list_feature_config.feature_id]
         for id_list_feature_config in self.id_list_feature_configs
     }
     state_feature_vector = rlt.PreprocessedState(
         state=rlt.PreprocessedFeatureVector(
             float_features=preprocessed_state,
             id_list_features=id_list_features))
     q_values = self.model(state_feature_vector).q_values
     return q_values
Esempio n. 8
0
    def train(self, training_batch):
        if isinstance(training_batch, TrainingDataPage):
            training_batch = training_batch.as_discrete_maxq_training_batch()

        learning_input = training_batch.training_input
        state = rlt.PreprocessedState(state=learning_input.state)
        next_state = rlt.PreprocessedState(state=learning_input.next_state)
        rewards = self.boost_rewards(learning_input.reward,
                                     learning_input.action)
        discount_tensor = torch.full_like(rewards, self.gamma)
        possible_next_actions_mask = learning_input.possible_next_actions_mask.float(
        )
        possible_actions_mask = learning_input.possible_actions_mask.float()

        self.minibatch += 1
        not_done_mask = learning_input.not_terminal.float()

        if self.use_seq_num_diff_as_time_diff:
            assert self.multi_steps is None
            discount_tensor = torch.pow(self.gamma,
                                        learning_input.time_diff.float())
        if self.multi_steps is not None:
            discount_tensor = torch.pow(self.gamma,
                                        learning_input.step.float())

        next_qf = self.q_network_target.dist(next_state)

        if self.maxq_learning:
            # Select distribution corresponding to max valued action
            next_q_values = (self.q_network(next_state)
                             if self.double_q_learning else next_qf.mean(2))
            next_action = self.argmax_with_mask(next_q_values,
                                                possible_next_actions_mask)
            next_qf = next_qf[range(rewards.shape[0]), next_action.reshape(-1)]
        else:
            next_qf = (next_qf *
                       learning_input.next_action.unsqueeze(-1)).sum(1)

        # Build target distribution
        target_Q = rewards + discount_tensor * not_done_mask * next_qf

        with torch.enable_grad():
            current_qf = self.q_network.dist(state)

            # for reporting only
            all_q_values = current_qf.mean(2).detach()

            current_qf = (current_qf *
                          learning_input.action.unsqueeze(-1)).sum(1)

            # (batch, atoms) -> (atoms, batch, 1) -> (atoms, batch, atoms)
            td = target_Q.t().unsqueeze(-1) - current_qf
            loss = (self.huber(td) * (self.quantiles -
                                      (td.detach() < 0).float()).abs()).mean()

            loss.backward()
            self._maybe_run_optimizer(self.q_network_optimizer,
                                      self.minibatches_per_step)

        # Use the soft update rule to update target network
        self._maybe_soft_update(self.q_network, self.q_network_target,
                                self.tau, self.minibatches_per_step)

        model_action_idxs = self.argmax_with_mask(
            all_q_values,
            possible_actions_mask
            if self.maxq_learning else learning_input.action,
        )
        self.loss_reporter.report(
            td_loss=loss,
            logged_actions=learning_input.action.argmax(dim=1, keepdim=True),
            logged_propensities=training_batch.extras.action_probability,
            logged_rewards=rewards,
            model_values=all_q_values,
            model_action_idxs=model_action_idxs,
        )
Esempio n. 9
0
    def create_from_tensors_dqn(
        cls,
        trainer: DQNTrainer,
        mdp_ids: np.ndarray,
        sequence_numbers: torch.Tensor,
        states: rlt.PreprocessedFeatureVector,
        actions: rlt.PreprocessedFeatureVector,
        propensities: torch.Tensor,
        rewards: torch.Tensor,
        possible_actions_mask: torch.Tensor,
        metrics: Optional[torch.Tensor] = None,
    ):
        old_q_train_state = trainer.q_network.training
        old_reward_train_state = trainer.reward_network.training
        old_q_cpe_train_state = trainer.q_network_cpe.training
        trainer.q_network.train(False)
        trainer.reward_network.train(False)
        trainer.q_network_cpe.train(False)

        num_actions = trainer.num_actions
        action_mask = actions.float()  # type: ignore

        rewards = trainer.boost_rewards(rewards, actions)  # type: ignore
        model_values = trainer.q_network_cpe(
            rlt.PreprocessedState(state=states)
        ).q_values[:, 0:num_actions]
        optimal_q_values, _ = trainer.get_detached_q_values(
            states  # type: ignore
        )
        eval_action_idxs = trainer.get_max_q_values(  # type: ignore
            optimal_q_values, possible_actions_mask
        )[1]
        model_propensities = masked_softmax(
            optimal_q_values, possible_actions_mask, trainer.rl_temperature
        )
        assert model_values.shape == actions.shape, (  # type: ignore
            "Invalid shape: "
            + str(model_values.shape)  # type: ignore
            + " != "
            + str(actions.shape)  # type: ignore
        )
        assert model_values.shape == possible_actions_mask.shape, (  # type: ignore
            "Invalid shape: "
            + str(model_values.shape)  # type: ignore
            + " != "
            + str(possible_actions_mask.shape)  # type: ignore
        )
        model_values_for_logged_action = torch.sum(
            model_values * action_mask, dim=1, keepdim=True
        )

        rewards_and_metric_rewards = trainer.reward_network(
            rlt.PreprocessedState(state=states)
        )

        # In case we reuse the modular for Q-network
        if hasattr(rewards_and_metric_rewards, "q_values"):
            rewards_and_metric_rewards = rewards_and_metric_rewards.q_values

        model_rewards = rewards_and_metric_rewards[:, 0:num_actions]
        assert model_rewards.shape == actions.shape, (  # type: ignore
            "Invalid shape: "
            + str(model_rewards.shape)  # type: ignore
            + " != "
            + str(actions.shape)  # type: ignore
        )
        model_rewards_for_logged_action = torch.sum(
            model_rewards * action_mask, dim=1, keepdim=True
        )

        model_metrics = rewards_and_metric_rewards[:, num_actions:]

        assert model_metrics.shape[1] % num_actions == 0, (
            "Invalid metrics shape: "
            + str(model_metrics.shape)
            + " "
            + str(num_actions)
        )
        num_metrics = model_metrics.shape[1] // num_actions

        if num_metrics == 0:
            model_metrics_values = None
            model_metrics_for_logged_action = None
            model_metrics_values_for_logged_action = None
        else:
            model_metrics_values = trainer.q_network_cpe(
                rlt.PreprocessedState(state=states)
            )
            # Backward compatility
            if hasattr(model_metrics_values, "q_values"):
                model_metrics_values = model_metrics_values.q_values
            model_metrics_values = model_metrics_values[:, num_actions:]
            assert (
                model_metrics_values.shape[1] == num_actions * num_metrics
            ), (  # type: ignore
                "Invalid shape: "
                + str(model_metrics_values.shape[1])  # type: ignore
                + " != "
                + str(actions.shape[1] * num_metrics)  # type: ignore
            )

            model_metrics_for_logged_action_list = []
            model_metrics_values_for_logged_action_list = []
            for metric_index in range(num_metrics):
                metric_start = metric_index * num_actions
                metric_end = (metric_index + 1) * num_actions
                model_metrics_for_logged_action_list.append(
                    torch.sum(
                        model_metrics[:, metric_start:metric_end] * action_mask,
                        dim=1,
                        keepdim=True,
                    )
                )

                model_metrics_values_for_logged_action_list.append(
                    torch.sum(
                        model_metrics_values[:, metric_start:metric_end] * action_mask,
                        dim=1,
                        keepdim=True,
                    )
                )
            model_metrics_for_logged_action = torch.cat(
                model_metrics_for_logged_action_list, dim=1
            )
            model_metrics_values_for_logged_action = torch.cat(
                model_metrics_values_for_logged_action_list, dim=1
            )

        trainer.q_network_cpe.train(old_q_cpe_train_state)  # type: ignore
        trainer.q_network.train(old_q_train_state)  # type: ignore
        trainer.reward_network.train(old_reward_train_state)  # type: ignore

        return cls(
            mdp_id=mdp_ids,
            sequence_number=sequence_numbers,
            logged_propensities=propensities,
            logged_rewards=rewards,
            action_mask=action_mask,
            model_rewards=model_rewards,
            model_rewards_for_logged_action=model_rewards_for_logged_action,
            model_values=model_values,
            model_values_for_logged_action=model_values_for_logged_action,
            model_metrics_values=model_metrics_values,
            model_metrics_values_for_logged_action=model_metrics_values_for_logged_action,
            model_propensities=model_propensities,
            logged_metrics=metrics,
            model_metrics=model_metrics,
            model_metrics_for_logged_action=model_metrics_for_logged_action,
            # Will compute later
            logged_values=None,
            logged_metrics_values=None,
            possible_actions_mask=possible_actions_mask,
            optimal_q_values=optimal_q_values,
            eval_action_idxs=eval_action_idxs,
        )
Esempio n. 10
0
    def train(self, training_batch):
        if isinstance(training_batch, TrainingDataPage):
            training_batch = training_batch.as_discrete_maxq_training_batch()

        learning_input = training_batch.training_input
        boosted_rewards = self.boost_rewards(learning_input.reward,
                                             learning_input.action)

        self.minibatch += 1
        rewards = boosted_rewards
        discount_tensor = torch.full_like(rewards, self.gamma)
        not_done_mask = learning_input.not_terminal.float()

        if self.use_seq_num_diff_as_time_diff:
            assert self.multi_steps is None
            discount_tensor = torch.pow(self.gamma,
                                        learning_input.time_diff.float())
        if self.multi_steps is not None:
            discount_tensor = torch.pow(self.gamma,
                                        learning_input.step.float())

        all_next_q_values, all_next_q_values_target = self.get_detached_q_values(
            learning_input.next_state)

        if self.maxq_learning:
            # Compute max a' Q(s', a') over all possible actions using target network
            possible_next_actions_mask = (
                learning_input.possible_next_actions_mask.float())
            if self.bcq:
                action_on_policy = get_valid_actions_from_imitator(
                    self.bcq_imitator,
                    learning_input.next_state,
                    self.bcq_drop_threshold,
                )
                possible_next_actions_mask *= action_on_policy
            next_q_values, max_q_action_idxs = self.get_max_q_values_with_target(
                all_next_q_values, all_next_q_values_target,
                possible_next_actions_mask)
        else:
            # SARSA
            next_q_values, max_q_action_idxs = self.get_max_q_values_with_target(
                all_next_q_values, all_next_q_values_target,
                learning_input.next_action)

        filtered_next_q_vals = next_q_values * not_done_mask

        target_q_values = rewards + (discount_tensor * filtered_next_q_vals)

        with torch.enable_grad():
            # Get Q-value of action taken
            current_state = rlt.PreprocessedState(state=learning_input.state)
            all_q_values = self.q_network(current_state).q_values
            self.all_action_scores = all_q_values.detach()
            q_values = torch.sum(all_q_values * learning_input.action,
                                 1,
                                 keepdim=True)

            loss = self.q_network_loss(q_values, target_q_values)
            self.loss = loss.detach()

            loss.backward()
            self._maybe_run_optimizer(self.q_network_optimizer,
                                      self.minibatches_per_step)

        # Use the soft update rule to update target network
        self._maybe_soft_update(self.q_network, self.q_network_target,
                                self.tau, self.minibatches_per_step)

        # Get Q-values of next states, used in computing cpe
        next_state = rlt.PreprocessedState(state=learning_input.next_state)
        all_next_action_scores = self.q_network(next_state).q_values.detach()

        logged_action_idxs = learning_input.action.argmax(dim=1, keepdim=True)
        reward_loss, model_rewards, model_propensities = self._calculate_cpes(
            training_batch,
            current_state,
            next_state,
            self.all_action_scores,
            all_next_action_scores,
            logged_action_idxs,
            discount_tensor,
            not_done_mask,
        )

        if self.maxq_learning:
            possible_actions_mask = learning_input.possible_actions_mask

        if self.bcq:
            action_on_policy = get_valid_actions_from_imitator(
                self.bcq_imitator, learning_input.state,
                self.bcq_drop_threshold)
            possible_actions_mask *= action_on_policy

        model_action_idxs = self.get_max_q_values(
            self.all_action_scores,
            possible_actions_mask
            if self.maxq_learning else learning_input.action,
        )[1]

        self.loss_reporter.report(
            td_loss=self.loss,
            reward_loss=reward_loss,
            logged_actions=logged_action_idxs,
            logged_propensities=training_batch.extras.action_probability,
            logged_rewards=rewards,
            logged_values=None,  # Compute at end of each epoch for CPE
            model_propensities=model_propensities,
            model_rewards=model_rewards,
            model_values=self.all_action_scores,
            model_values_on_logged_actions=
            None,  # Compute at end of each epoch for CPE
            model_action_idxs=model_action_idxs,
        )
Esempio n. 11
0
    def train(self, training_batch):
        if isinstance(training_batch, TrainingDataPage):
            training_batch = training_batch.as_discrete_maxq_training_batch()

        learning_input = training_batch.training_input
        state = rlt.PreprocessedState(state=learning_input.state)
        next_state = rlt.PreprocessedState(state=learning_input.next_state)
        rewards = self.boost_rewards(learning_input.reward,
                                     learning_input.action)
        discount_tensor = torch.full_like(rewards, self.gamma)
        possible_next_actions_mask = learning_input.possible_next_actions_mask.float(
        )
        possible_actions_mask = learning_input.possible_actions_mask.float()

        self.minibatch += 1
        not_done_mask = learning_input.not_terminal.float()

        if self.use_seq_num_diff_as_time_diff:
            assert self.multi_steps is None
            discount_tensor = torch.pow(self.gamma,
                                        learning_input.time_diff.float())
        if self.multi_steps is not None:
            discount_tensor = torch.pow(self.gamma,
                                        learning_input.step.float())

        next_dist = self.q_network_target.log_dist(next_state).exp()

        if self.maxq_learning:
            # Select distribution corresponding to max valued action
            if self.double_q_learning:
                next_q_values = (self.q_network.log_dist(next_state).exp() *
                                 self.support).sum(2)
            else:
                next_q_values = (next_dist * self.support).sum(2)

            next_action = self.argmax_with_mask(next_q_values,
                                                possible_next_actions_mask)
            next_dist = next_dist[range(rewards.shape[0]),
                                  next_action.reshape(-1)]
        else:
            next_dist = (next_dist *
                         learning_input.next_action.unsqueeze(-1)).sum(1)

        # Build target distribution
        target_Q = rewards + discount_tensor * not_done_mask * self.support

        # Project target distribution back onto support
        # remove support outliers
        target_Q = target_Q.clamp(self.qmin, self.qmax)
        # rescale to indicies
        b = (target_Q - self.qmin) / (self.qmax -
                                      self.qmin) * (self.num_atoms - 1.0)
        lower = b.floor()
        upper = b.ceil()

        # Since index_add_ doesn't work with multiple dimensions
        # we operate on the flattened tensors
        offset = self.num_atoms * torch.arange(
            rewards.shape[0], device=self.device, dtype=torch.long).reshape(
                -1, 1).repeat(1, self.num_atoms)

        m = torch.zeros_like(next_dist)
        m.reshape(-1).index_add_(
            0,
            (lower.long() + offset).reshape(-1),
            (next_dist * (upper - b)).reshape(-1),
        )
        m.reshape(-1).index_add_(
            0,
            (upper.long() + offset).reshape(-1),
            (next_dist * (b - lower)).reshape(-1),
        )

        with torch.enable_grad():
            log_dist = self.q_network.log_dist(state)

            # for reporting only
            all_q_values = (log_dist.exp() * self.support).sum(2).detach()

            log_dist = (log_dist * learning_input.action.unsqueeze(-1)).sum(1)

            loss = -(m * log_dist).sum(1).mean()
            loss.backward()
            self._maybe_run_optimizer(self.q_network_optimizer,
                                      self.minibatches_per_step)

        # Use the soft update rule to update target network
        self._maybe_soft_update(self.q_network, self.q_network_target,
                                self.tau, self.minibatches_per_step)

        model_action_idxs = self.argmax_with_mask(
            all_q_values,
            possible_actions_mask
            if self.maxq_learning else learning_input.action,
        )
        self.loss_reporter.report(
            td_loss=loss,
            logged_actions=learning_input.action.argmax(dim=1, keepdim=True),
            logged_propensities=training_batch.extras.action_probability,
            logged_rewards=rewards,
            model_values=all_q_values,
            model_action_idxs=model_action_idxs,
        )
Esempio n. 12
0
 def get_detached_q_values(self, state):
     """ Gets the q values from the model and target networks """
     input = rlt.PreprocessedState(state=state)
     q_values = self.q_network(input).q_values
     q_values_target = self.q_network_target(input).q_values
     return q_values, q_values_target
Esempio n. 13
0
    def train(self, training_batch) -> None:
        """
        IMPORTANT: the input action here is assumed to be preprocessed to match the
        range of the output of the actor.
        """
        if hasattr(training_batch, "as_policy_network_training_batch"):
            training_batch = training_batch.as_policy_network_training_batch()

        learning_input = training_batch.training_input
        self.minibatch += 1

        state = learning_input.state
        action = learning_input.action
        next_state = learning_input.next_state
        reward = learning_input.reward
        not_done_mask = learning_input.not_terminal

        action = self._maybe_scale_action_in_train(action.float_features)

        max_action = (self.max_action_range_tensor_training
                      if self.max_action_range_tensor_training else torch.ones(
                          action.shape, device=self.device))
        min_action = (self.min_action_range_tensor_serving
                      if self.min_action_range_tensor_serving else
                      -torch.ones(action.shape, device=self.device))

        # Compute current value estimates
        current_state_action = rlt.PreprocessedStateAction(
            state=state,
            action=rlt.PreprocessedFeatureVector(float_features=action))
        q1_value = self.q1_network(current_state_action).q_value
        if self.q2_network:
            q2_value = self.q2_network(current_state_action).q_value
        actor_action = self.actor_network(
            rlt.PreprocessedState(state=state)).action

        # Generate target = r + y * min (Q1(s',pi(s')), Q2(s',pi(s')))
        with torch.no_grad():
            next_actor = self.actor_network_target(
                rlt.PreprocessedState(state=next_state)).action
            next_actor += (torch.randn_like(next_actor) *
                           self.target_policy_smoothing).clamp(
                               -self.noise_clip, self.noise_clip)
            next_actor = torch.max(torch.min(next_actor, max_action),
                                   min_action)
            next_state_actor = rlt.PreprocessedStateAction(
                state=next_state,
                action=rlt.PreprocessedFeatureVector(
                    float_features=next_actor),
            )
            next_state_value = self.q1_network_target(next_state_actor).q_value

            if self.q2_network is not None:
                next_state_value = torch.min(
                    next_state_value,
                    self.q2_network_target(next_state_actor).q_value)

            target_q_value = (
                reward + self.gamma * next_state_value * not_done_mask.float())

        # Optimize Q1 and Q2
        q1_loss = F.mse_loss(q1_value, target_q_value)
        q1_loss.backward()
        self._maybe_run_optimizer(self.q1_network_optimizer,
                                  self.minibatches_per_step)
        if self.q2_network:
            q2_loss = F.mse_loss(q2_value, target_q_value)
            q2_loss.backward()
            self._maybe_run_optimizer(self.q2_network_optimizer,
                                      self.minibatches_per_step)

        # Only update actor and target networks after a fixed number of Q updates
        if self.minibatch % self.delayed_policy_update == 0:
            actor_loss = -self.q1_network(
                rlt.PreprocessedStateAction(
                    state=state,
                    action=rlt.PreprocessedFeatureVector(
                        float_features=actor_action),
                )).q_value.mean()
            actor_loss.backward()
            self._maybe_run_optimizer(self.actor_network_optimizer,
                                      self.minibatches_per_step)

            # Use the soft update rule to update the target networks
            self._maybe_soft_update(
                self.q1_network,
                self.q1_network_target,
                self.tau,
                self.minibatches_per_step,
            )
            self._maybe_soft_update(
                self.actor_network,
                self.actor_network_target,
                self.tau,
                self.minibatches_per_step,
            )
            if self.q2_network is not None:
                self._maybe_soft_update(
                    self.q2_network,
                    self.q2_network_target,
                    self.tau,
                    self.minibatches_per_step,
                )

        # Logging at the end to schedule all the cuda operations first
        if (self.tensorboard_logging_freq != 0
                and self.minibatch % self.tensorboard_logging_freq == 0):
            SummaryWriterContext.add_histogram("q1/logged_state_value",
                                               q1_value)
            if self.q2_network:
                SummaryWriterContext.add_histogram("q2/logged_state_value",
                                                   q2_value)

            SummaryWriterContext.add_histogram("q_network/next_state_value",
                                               next_state_value)
            SummaryWriterContext.add_histogram("q_network/target_q_value",
                                               target_q_value)
            SummaryWriterContext.add_histogram("actor/loss", actor_loss)

        self.loss_reporter.report(
            td_loss=float(q1_loss),
            reward_loss=None,
            logged_rewards=reward,
            model_values_on_logged_actions=q1_value,
        )
Esempio n. 14
0
    def create_from_tensors(
        cls,
        trainer: DQNTrainer,
        mdp_ids: np.ndarray,
        sequence_numbers: torch.Tensor,
        states: rlt.PreprocessedFeatureVector,
        actions: rlt.PreprocessedFeatureVector,
        propensities: torch.Tensor,
        rewards: torch.Tensor,
        possible_actions_mask: torch.Tensor,
        possible_actions: Optional[rlt.PreprocessedFeatureVector] = None,
        max_num_actions: Optional[int] = None,
        metrics: Optional[torch.Tensor] = None,
    ):
        # Switch to evaluation mode for the network
        old_q_train_state = trainer.q_network.training
        old_reward_train_state = trainer.reward_network.training
        trainer.q_network.train(False)
        trainer.reward_network.train(False)

        if max_num_actions:
            # Parametric model CPE
            state_action_pairs = rlt.PreprocessedStateAction(
                state=states, action=actions
            )
            tiled_state = states.float_features.repeat(1, max_num_actions).reshape(
                -1, states.float_features.shape[1]
            )
            assert possible_actions is not None
            # Get Q-value of action taken
            possible_actions_state_concat = rlt.PreprocessedStateAction(
                state=rlt.PreprocessedFeatureVector(float_features=tiled_state),
                action=possible_actions,
            )

            # Parametric actions
            # FIXME: model_values and model propensities should be calculated
            # as in discrete dqn model
            model_values = trainer.q_network(
                possible_actions_state_concat
            ).q_value  # type: ignore
            optimal_q_values = model_values
            eval_action_idxs = None

            assert (
                model_values.shape[0] * model_values.shape[1]
                == possible_actions_mask.shape[0] * possible_actions_mask.shape[1]
            ), (
                "Invalid shapes: "
                + str(model_values.shape)
                + " != "
                + str(possible_actions_mask.shape)
            )
            model_values = model_values.reshape(possible_actions_mask.shape)
            model_propensities = masked_softmax(
                model_values, possible_actions_mask, trainer.rl_temperature
            )

            model_rewards = trainer.reward_network(
                possible_actions_state_concat
            ).q_value  # type: ignore
            assert (
                model_rewards.shape[0] * model_rewards.shape[1]
                == possible_actions_mask.shape[0] * possible_actions_mask.shape[1]
            ), (
                "Invalid shapes: "
                + str(model_rewards.shape)
                + " != "
                + str(possible_actions_mask.shape)
            )
            model_rewards = model_rewards.reshape(possible_actions_mask.shape)

            model_values_for_logged_action = trainer.q_network(
                state_action_pairs
            ).q_value
            model_rewards_for_logged_action = trainer.reward_network(
                state_action_pairs
            ).q_value

            action_mask = (
                torch.abs(model_values - model_values_for_logged_action) < 1e-3
            ).float()

            model_metrics = None
            model_metrics_for_logged_action = None
            model_metrics_values = None
            model_metrics_values_for_logged_action = None
        else:
            num_actions = trainer.num_actions
            action_mask = actions.float()  # type: ignore

            # Switch to evaluation mode for the network
            old_q_cpe_train_state = trainer.q_network_cpe.training
            trainer.q_network_cpe.train(False)

            # Discrete actions
            rewards = trainer.boost_rewards(rewards, actions)  # type: ignore
            model_values = trainer.q_network_cpe(
                rlt.PreprocessedState(state=states)
            ).q_values[:, 0:num_actions]
            optimal_q_values = trainer.get_detached_q_values(
                states  # type: ignore
            )[  # type: ignore
                0
            ]  # type: ignore
            eval_action_idxs = trainer.get_max_q_values(  # type: ignore
                optimal_q_values, possible_actions_mask
            )[1]
            model_propensities = masked_softmax(
                optimal_q_values, possible_actions_mask, trainer.rl_temperature
            )
            assert model_values.shape == actions.shape, (  # type: ignore
                "Invalid shape: "
                + str(model_values.shape)  # type: ignore
                + " != "
                + str(actions.shape)  # type: ignore
            )
            assert model_values.shape == possible_actions_mask.shape, (  # type: ignore
                "Invalid shape: "
                + str(model_values.shape)  # type: ignore
                + " != "
                + str(possible_actions_mask.shape)  # type: ignore
            )
            model_values_for_logged_action = torch.sum(
                model_values * action_mask, dim=1, keepdim=True
            )

            rewards_and_metric_rewards = trainer.reward_network(
                rlt.PreprocessedState(state=states)
            )

            # In case we reuse the modular for Q-network
            if hasattr(rewards_and_metric_rewards, "q_values"):
                rewards_and_metric_rewards = rewards_and_metric_rewards.q_values

            model_rewards = rewards_and_metric_rewards[:, 0:num_actions]
            assert model_rewards.shape == actions.shape, (  # type: ignore
                "Invalid shape: "
                + str(model_rewards.shape)  # type: ignore
                + " != "
                + str(actions.shape)  # type: ignore
            )
            model_rewards_for_logged_action = torch.sum(
                model_rewards * action_mask, dim=1, keepdim=True
            )

            model_metrics = rewards_and_metric_rewards[:, num_actions:]

            assert model_metrics.shape[1] % num_actions == 0, (
                "Invalid metrics shape: "
                + str(model_metrics.shape)
                + " "
                + str(num_actions)
            )
            num_metrics = model_metrics.shape[1] // num_actions

            if num_metrics == 0:
                model_metrics_values = None
                model_metrics_for_logged_action = None
                model_metrics_values_for_logged_action = None
            else:
                model_metrics_values = trainer.q_network_cpe(
                    rlt.PreprocessedState(state=states)
                )
                # Backward compatility
                if hasattr(model_metrics_values, "q_values"):
                    model_metrics_values = model_metrics_values.q_values
                model_metrics_values = model_metrics_values[:, num_actions:]
                assert (
                    model_metrics_values.shape[1] == num_actions * num_metrics
                ), (  # type: ignore
                    "Invalid shape: "
                    + str(model_metrics_values.shape[1])  # type: ignore
                    + " != "
                    + str(actions.shape[1] * num_metrics)  # type: ignore
                )

                model_metrics_for_logged_action_list = []
                model_metrics_values_for_logged_action_list = []
                for metric_index in range(num_metrics):
                    metric_start = metric_index * num_actions
                    metric_end = (metric_index + 1) * num_actions
                    model_metrics_for_logged_action_list.append(
                        torch.sum(
                            model_metrics[:, metric_start:metric_end] * action_mask,
                            dim=1,
                            keepdim=True,
                        )
                    )

                    model_metrics_values_for_logged_action_list.append(
                        torch.sum(
                            model_metrics_values[:, metric_start:metric_end]
                            * action_mask,
                            dim=1,
                            keepdim=True,
                        )
                    )
                model_metrics_for_logged_action = torch.cat(
                    model_metrics_for_logged_action_list, dim=1
                )
                model_metrics_values_for_logged_action = torch.cat(
                    model_metrics_values_for_logged_action_list, dim=1
                )

            # Switch back to the old mode
            trainer.q_network_cpe.train(old_q_cpe_train_state)  # type: ignore

        # Switch back to the old mode
        trainer.q_network.train(old_q_train_state)  # type: ignore
        trainer.reward_network.train(old_reward_train_state)  # type: ignore

        return cls(
            mdp_id=mdp_ids,
            sequence_number=sequence_numbers,
            logged_propensities=propensities,
            logged_rewards=rewards,
            action_mask=action_mask,
            model_rewards=model_rewards,
            model_rewards_for_logged_action=model_rewards_for_logged_action,
            model_values=model_values,
            model_values_for_logged_action=model_values_for_logged_action,
            model_metrics_values=model_metrics_values,
            model_metrics_values_for_logged_action=model_metrics_values_for_logged_action,
            model_propensities=model_propensities,
            logged_metrics=metrics,
            model_metrics=model_metrics,
            model_metrics_for_logged_action=model_metrics_for_logged_action,
            # Will compute later
            logged_values=None,
            logged_metrics_values=None,
            possible_actions_mask=possible_actions_mask,
            optimal_q_values=optimal_q_values,
            eval_action_idxs=eval_action_idxs,
        )
Esempio n. 15
0
    def train(self, training_batch) -> None:
        """
        IMPORTANT: the input action here is assumed to be preprocessed to match the
        range of the output of the actor.
        """
        if hasattr(training_batch, "as_policy_network_training_batch"):
            training_batch = training_batch.as_policy_network_training_batch()

        learning_input = training_batch.training_input
        self.minibatch += 1

        state = learning_input.state
        action = learning_input.action
        reward = learning_input.reward
        discount = torch.full_like(reward, self.gamma)
        not_done_mask = learning_input.not_terminal

        if self._should_scale_action_in_train():
            action = action._replace(
                float_features=rescale_torch_tensor(
                    action.float_features,
                    new_min=self.min_action_range_tensor_training,
                    new_max=self.max_action_range_tensor_training,
                    prev_min=self.min_action_range_tensor_serving,
                    prev_max=self.max_action_range_tensor_serving,
                )
            )

        with torch.enable_grad():
            #
            # First, optimize Q networks; minimizing MSE between
            # Q(s, a) & r + discount * V'(next_s)
            #

            current_state_action = rlt.PreprocessedStateAction(
                state=state, action=action
            )
            q1_value = self.q1_network(current_state_action).q_value
            if self.q2_network:
                q2_value = self.q2_network(current_state_action).q_value
            actor_output = self.actor_network(rlt.PreprocessedState(state=state))

            # Optimize Alpha
            if self.alpha_optimizer is not None:
                alpha_loss = -(
                    self.log_alpha
                    * (actor_output.log_prob + self.target_entropy).detach()
                ).mean()
                self.alpha_optimizer.zero_grad()
                alpha_loss.backward()
                self.alpha_optimizer.step()
                self.entropy_temperature = self.log_alpha.exp()

            with torch.no_grad():
                if self.value_network is not None:
                    next_state_value = self.value_network_target(
                        learning_input.next_state.float_features
                    )
                else:
                    next_state_actor_output = self.actor_network(
                        rlt.PreprocessedState(state=learning_input.next_state)
                    )
                    next_state_actor_action = rlt.PreprocessedStateAction(
                        state=learning_input.next_state,
                        action=rlt.PreprocessedFeatureVector(
                            float_features=next_state_actor_output.action
                        ),
                    )
                    next_state_value = self.q1_network_target(
                        next_state_actor_action
                    ).q_value

                    if self.q2_network is not None:
                        target_q2_value = self.q2_network_target(
                            next_state_actor_action
                        ).q_value
                        next_state_value = torch.min(next_state_value, target_q2_value)

                    log_prob_a = self.actor_network.get_log_prob(
                        learning_input.next_state, next_state_actor_output.action
                    )
                    log_prob_a = log_prob_a.clamp(-20.0, 20.0)
                    next_state_value -= self.entropy_temperature * log_prob_a

                target_q_value = (
                    reward + discount * next_state_value * not_done_mask.float()
                )

            q1_loss = F.mse_loss(q1_value, target_q_value)
            q1_loss.backward()
            self._maybe_run_optimizer(
                self.q1_network_optimizer, self.minibatches_per_step
            )
            if self.q2_network:
                q2_loss = F.mse_loss(q2_value, target_q_value)
                q2_loss.backward()
                self._maybe_run_optimizer(
                    self.q2_network_optimizer, self.minibatches_per_step
                )

            #
            # Second, optimize the actor; minimizing KL-divergence between action propensity
            # & softmax of value. Due to reparameterization trick, it ends up being
            # log_prob(actor_action) - Q(s, actor_action)
            #

            state_actor_action = rlt.PreprocessedStateAction(
                state=state,
                action=rlt.PreprocessedFeatureVector(
                    float_features=actor_output.action
                ),
            )
            q1_actor_value = self.q1_network(state_actor_action).q_value
            min_q_actor_value = q1_actor_value
            if self.q2_network:
                q2_actor_value = self.q2_network(state_actor_action).q_value
                min_q_actor_value = torch.min(q1_actor_value, q2_actor_value)

            actor_loss = (
                self.entropy_temperature * actor_output.log_prob - min_q_actor_value
            )
            # Do this in 2 steps so we can log histogram of actor loss
            actor_loss_mean = actor_loss.mean()
            actor_loss_mean.backward()
            self._maybe_run_optimizer(
                self.actor_network_optimizer, self.minibatches_per_step
            )

            #
            # Lastly, if applicable, optimize value network; minimizing MSE between
            # V(s) & E_a~pi(s) [ Q(s,a) - log(pi(a|s)) ]
            #

            if self.value_network is not None:
                state_value = self.value_network(state.float_features)

                if self.logged_action_uniform_prior:
                    log_prob_a = torch.zeros_like(min_q_actor_value)
                    target_value = min_q_actor_value
                else:
                    with torch.no_grad():
                        log_prob_a = actor_output.log_prob
                        log_prob_a = log_prob_a.clamp(-20.0, 20.0)
                        target_value = (
                            min_q_actor_value - self.entropy_temperature * log_prob_a
                        )

                value_loss = F.mse_loss(state_value, target_value.detach())
                value_loss.backward()
                self._maybe_run_optimizer(
                    self.value_network_optimizer, self.minibatches_per_step
                )

        # Use the soft update rule to update the target networks
        if self.value_network is not None:
            self._maybe_soft_update(
                self.value_network,
                self.value_network_target,
                self.tau,
                self.minibatches_per_step,
            )
        else:
            self._maybe_soft_update(
                self.q1_network,
                self.q1_network_target,
                self.tau,
                self.minibatches_per_step,
            )
            if self.q2_network is not None:
                self._maybe_soft_update(
                    self.q2_network,
                    self.q2_network_target,
                    self.tau,
                    self.minibatches_per_step,
                )

        # Logging at the end to schedule all the cuda operations first
        if (
            self.tensorboard_logging_freq is not None
            and self.minibatch % self.tensorboard_logging_freq == 0
        ):
            SummaryWriterContext.add_histogram("q1/logged_state_value", q1_value)
            if self.q2_network:
                SummaryWriterContext.add_histogram("q2/logged_state_value", q2_value)

            SummaryWriterContext.add_histogram("log_prob_a", log_prob_a)
            if self.value_network:
                SummaryWriterContext.add_histogram("value_network/target", target_value)

            SummaryWriterContext.add_histogram(
                "q_network/next_state_value", next_state_value
            )
            SummaryWriterContext.add_histogram(
                "q_network/target_q_value", target_q_value
            )
            SummaryWriterContext.add_histogram(
                "actor/min_q_actor_value", min_q_actor_value
            )
            SummaryWriterContext.add_histogram(
                "actor/action_log_prob", actor_output.log_prob
            )
            SummaryWriterContext.add_histogram("actor/loss", actor_loss)

        self.loss_reporter.report(
            td_loss=float(q1_loss),
            reward_loss=None,
            logged_rewards=reward,
            model_values_on_logged_actions=q1_value,
            model_propensities=actor_output.log_prob.exp(),
            model_values=min_q_actor_value,
        )