target_output, batch_size=256, sequence_length=24, training_len=0.75, validation_len=0.225) model = ml.train_model(model, batch, validation_data, x_test_scaled, y_test_scaled, callbacks, epoch_size=25, epoch_steps=100) ml.save_model(model, 'model.h5') output = ml.load_models('model.h5') import importlib importlib.reload(ml) start_idx = 0 length = 500 target_names = target_output y_pred, y_true, x = ml.plot_comparison(x_test_scaled, y_test, y_scaler, target_names, output, length=length)
target_output, batch_size=256, sequence_length=24, training_len=0.9, validation_len=0.1) model=ml.train_model(model, batch, validation_data, x_test_scaled, y_test_scaled, callbacks, epoch_size=20, epoch_steps=100) ml.save_model(model,'entersolar_model.h5') output = ml.load_models('entersolar_model.h5') import importlib importlib.reload(ml) start_idx = 0 length = 2000 target_names = target_output y_pred, y_true,x,mse = ml.plot_comparison(x_test_scaled,y_test,y_scaler, target_names,output, start_idx = start_idx, length=length, verbose=True)
target_output, batch_size=256, sequence_length=10, training_len=0.85, validation_len=0.1) model = ml.train_model(model, batch, validation_data, x_test_scaled, y_test_scaled, callbacks, epoch_size=15, epoch_steps=100) ml.save_model(model, 'nsrdb_model.h5') output = ml.load_models('nsrdb_model.h5') import importlib importlib.reload(ml) start_idx = 0 length = 500 target_names = target_output y_pred, y_true, x = ml.plot_comparison(x_test_scaled, y_test, y_scaler, target_names, output, length=length)
target_output, batch_size=256, sequence_length=20, training_len=0.9, validation_len=0.1) model = ml.train_model(model, batch, validation_data, x_test_scaled, y_test_scaled, callbacks, epoch_size=20, epoch_steps=100) ml.save_model(model, 'building_demand.h5') output = ml.load_models('building_demand.h5') import importlib importlib.reload(ml) start_idx = 0 length = 500 target_names = target_output y_pred, y_true, x, mse = ml.plot_comparison(x_test_scaled, y_test, y_scaler, target_names, output, start_idx=start_idx, length=length,
target_output = ['actual_dc_power', 'ac_power', 'grid_power'] model, batch, validation_data, callbacks, x_test_scaled, y_test_scaled, y_test, y_scaler = ml.model_generation( df, target_output) model = ml.train_model(model, batch, validation_data, x_test_scaled, y_test_scaled, callbacks, epoch_size=15, epoch_steps=100) ml.save_model(model, 'watson_ibm_model.h5') output = ml.load_models('watson_ibm_model.h5') import importlib importlib.reload(ml) start_idx = 0 length = 500 target_names = target_output y_pred, y_true, x = ml.plot_comparison(x_test_scaled, y_test, y_scaler, target_names, output, length=length)