Esempio n. 1
0
    target_output,
    batch_size=256,
    sequence_length=24,
    training_len=0.75,
    validation_len=0.225)

model = ml.train_model(model,
                       batch,
                       validation_data,
                       x_test_scaled,
                       y_test_scaled,
                       callbacks,
                       epoch_size=25,
                       epoch_steps=100)

ml.save_model(model, 'model.h5')

output = ml.load_models('model.h5')

import importlib
importlib.reload(ml)
start_idx = 0
length = 500
target_names = target_output
y_pred, y_true, x = ml.plot_comparison(x_test_scaled,
                                       y_test,
                                       y_scaler,
                                       target_names,
                                       output,
                                       length=length)
Esempio n. 2
0
                                                                                                 target_output,
                                                                                                 batch_size=256,
                                                                                                 sequence_length=24,
                                                                                                 training_len=0.9,
                                                                                                 validation_len=0.1)

model=ml.train_model(model,
                      batch,
                      validation_data,
                      x_test_scaled,
                      y_test_scaled,
                      callbacks,
                      epoch_size=20,
                      epoch_steps=100)

ml.save_model(model,'entersolar_model.h5')

output = ml.load_models('entersolar_model.h5')

import importlib
importlib.reload(ml)
start_idx = 0
length = 2000
target_names = target_output
y_pred, y_true,x,mse = ml.plot_comparison(x_test_scaled,y_test,y_scaler,
                                                       target_names,output,
                                                       start_idx = start_idx,
                                                       length=length,
                                                       verbose=True)

Esempio n. 3
0
    target_output,
    batch_size=256,
    sequence_length=10,
    training_len=0.85,
    validation_len=0.1)

model = ml.train_model(model,
                       batch,
                       validation_data,
                       x_test_scaled,
                       y_test_scaled,
                       callbacks,
                       epoch_size=15,
                       epoch_steps=100)

ml.save_model(model, 'nsrdb_model.h5')

output = ml.load_models('nsrdb_model.h5')

import importlib
importlib.reload(ml)
start_idx = 0
length = 500
target_names = target_output
y_pred, y_true, x = ml.plot_comparison(x_test_scaled,
                                       y_test,
                                       y_scaler,
                                       target_names,
                                       output,
                                       length=length)
Esempio n. 4
0
    target_output,
    batch_size=256,
    sequence_length=20,
    training_len=0.9,
    validation_len=0.1)

model = ml.train_model(model,
                       batch,
                       validation_data,
                       x_test_scaled,
                       y_test_scaled,
                       callbacks,
                       epoch_size=20,
                       epoch_steps=100)

ml.save_model(model, 'building_demand.h5')

output = ml.load_models('building_demand.h5')

import importlib
importlib.reload(ml)
start_idx = 0
length = 500
target_names = target_output
y_pred, y_true, x, mse = ml.plot_comparison(x_test_scaled,
                                            y_test,
                                            y_scaler,
                                            target_names,
                                            output,
                                            start_idx=start_idx,
                                            length=length,
Esempio n. 5
0
target_output = ['actual_dc_power', 'ac_power', 'grid_power']

model, batch, validation_data, callbacks, x_test_scaled, y_test_scaled, y_test, y_scaler = ml.model_generation(
    df, target_output)

model = ml.train_model(model,
                       batch,
                       validation_data,
                       x_test_scaled,
                       y_test_scaled,
                       callbacks,
                       epoch_size=15,
                       epoch_steps=100)

ml.save_model(model, 'watson_ibm_model.h5')

output = ml.load_models('watson_ibm_model.h5')

import importlib
importlib.reload(ml)
start_idx = 0
length = 500
target_names = target_output
y_pred, y_true, x = ml.plot_comparison(x_test_scaled,
                                       y_test,
                                       y_scaler,
                                       target_names,
                                       output,
                                       length=length)