Esempio n. 1
0
def nn(load_nn=True):
    """
    Output (if `load_nn` is True)
    -----------------------------
    Running 'nn'
    Loading data ...
    Loading NN ...
    Evaluating NN ... Elapsed time: 6.584 sec

    Test accuracy 0.9896 (error 1.04%)
    """
    print "Running 'nn'"
    print "Loading data ..."
    X_train, y_train = load_mnist(mode='train', path='data/')
    X_test, y_test = load_mnist(mode='test', path='data/')
    X_train /= 255.
    X_test /= 255.
    y_test = one_hot(y_test)

    if load_nn:
        print "Loading NN ..."
        nn = load_model('models/nn.json')
    else:
        nn = _train_nn(X_train.copy(), y_train.copy())

    print_inline("Evaluating NN ... ")
    with Stopwatch(verbose=True):
        y_pred = nn.predict(X_test)
        acc = accuracy_score(y_test, y_pred)
        
    print "\nTest accuracy {0:.4f} (error {1:.2f}%)".format(acc, 100. * (1. - acc))
Esempio n. 2
0
def knn_without_nn():
    """
    Possible output
    ---------------
    Running 'knn_without_nn'
    Loading data ...
    Training PCA ... Elapsed time: 10.642 sec
    Applying augmentation ... Elapsed time: 252.943 sec
    Transforming the data ... Elapsed time: 126.107 sec
    Building k-d tree ... Elapsed time: 8.022 sec
    Evaluating k-NN ... Elapsed time: 127.265 sec

    Test accuracy 0.9794 (error 2.06%)
    """
    print "Running 'knn_without_nn'"
    print "Loading data ..."
    X_train, y_train = load_mnist(mode='train', path='data/')
    X_test, y_test = load_mnist(mode='test', path='data/')
    X_train /= 255.
    X_test /= 255.

    print_inline("Training PCA ... ")
    with Stopwatch(verbose=True):
        pca = PCA(n_components=35, whiten=True).fit(X_train)

    aug = RandomAugmentator(transform_shape=(28, 28), random_seed=1337)
    aug.add('RandomRotate', angle=(-7., 10.))
    aug.add('RandomGaussian', sigma=(0., 0.5))
    aug.add('RandomShift', x_shift=(-1, 1), y_shift=(-1, 1))
    aug.add('Dropout', p=(0., 0.2))

    print_inline("Applying augmentation ... ")
    with Stopwatch(verbose=True):
        X_train = aug.transform(X_train, 8)
        y_train = np.repeat(y_train, 9)

    print_inline("Transforming the data ... ")
    with Stopwatch(verbose=True):
        X_train = pca.transform(X_train)
        X_test = pca.transform(X_test)
        z = pca.explained_variance_ratio_[:35]
        z /= sum(z)
        alpha = 11.6
        X_train *= np.exp(alpha * z)
        X_test *= np.exp(alpha * z)

    knn = KNNClassifier(algorithm='kd_tree', k=3, p=2, weights='uniform')
    print_inline("Building k-d tree ... ")
    with Stopwatch(verbose=True):
        knn.fit(X_train, y_train)

    print_inline("Evaluating k-NN ... ")
    with Stopwatch(verbose=True):
        y_pred = knn.predict(X_test)
        acc = accuracy_score(y_test, y_pred)

    print "\nTest accuracy {0:.4f} (error {1:.2f}%)".format(
        acc, 100. * (1. - acc))
Esempio n. 3
0
def knn(load_nn=True):
    """
    Possible output (if `load_nn` is True)
    --------------------------------------
    Running 'knn'
    Loading data ...
    Loading NN ...
    Extracting feature vectors ... Elapsed time: 11.017 sec
    Building k-d tree ... Elapsed time: 0.186 sec
    Evaluating k-NN ... Elapsed time: 28.483 sec

    Test accuracy 0.9887 (error 1.13%)
    """
    print "Running 'knn'"
    print "Loading data ..."
    X_train, y_train = load_mnist(mode='train', path='data/')
    X_test, y_test = load_mnist(mode='test', path='data/')
    X_train /= 255.
    X_test /= 255.

    if load_nn:
        print "Loading NN ..."
        nn = load_model('models/nn.json')
    else:
        nn = _train_nn(X_train.copy(), y_train.copy())

    print_inline("Extracting feature vectors ... ")
    with Stopwatch(verbose=True):
        nn.forward_pass(X_train)
        X_train = leaky_relu(nn.layers[13]._last_input)
        nn.forward_pass(X_test)
        X_test = leaky_relu(nn.layers[13]._last_input)

    knn = KNNClassifier(algorithm='kd_tree', k=3, p=2, weights='uniform')
    print_inline("Building k-d tree ... ")
    with Stopwatch(verbose=True):
        knn.fit(X_train, y_train)

    print_inline("Evaluating k-NN ... ")
    with Stopwatch(verbose=True):
        y_pred = knn.predict(X_test)
        acc = accuracy_score(y_test, y_pred)

    print "\nTest accuracy {0:.4f} (error {1:.2f}%)".format(
        acc, 100. * (1. - acc))
Esempio n. 4
0
def gp(load_nn=True):
    """
    Output (if `load_nn` is True)
    -----------------------------
    Running 'gp'
    Loading data ...
    Loading NN ...
    Extracting feature vectors ... Elapsed time: 1.932 sec
    Training GP ... Elapsed time: 403.602 sec
    Evaluating GP ... Elapsed time: 22.021 sec

    Test accuracy 0.9839 (error 1.61%)
    [!] 1.59% if mean is subtracted (lines 394, 395)
    """
    print "Running 'gp'"
    print "Loading data ..."
    X_train, y_train = load_mnist(mode='train', path='data/')
    X_test, y_test = load_mnist(mode='test', path='data/')
    X_train /= 255.
    X_test /= 255.
    y_test = one_hot(y_test)

    if load_nn:
        print "Loading NN ..."
        nn = load_model('models/nn.json')
    else:
        nn = _train_nn(X_train.copy(), y_train.copy())

    tts = TrainTestSplitter(shuffle=True, random_seed=1337)
    indices, _ = tts.split(y_train, train_ratio=800./60000., stratify=True) # 794
    X_train = X_train[indices]
    y_train = one_hot(y_train[indices])

    print_inline("Extracting feature vectors ... ")
    with Stopwatch(verbose=True):
        nn.forward_pass(X_train)
        X_train = leaky_relu(nn.layers[13]._last_input)
        nn.forward_pass(X_test)
        X_test = leaky_relu(nn.layers[13]._last_input)    

    X_train = StandardScaler(with_std=False).fit_transform(X_train)
    X_test = StandardScaler(with_std=False).fit_transform(X_test)

    gp = GPClassifier(algorithm='cg', 
                      kernel='rbf',
                      kernel_params=dict(
                            sigma=0.4217,
                            gamma=0.0008511
                      ),
                      sigma_n=0.,
                      max_iter=10000, 
                      tol=1e-7,
                      cg_tol=1e-7, 
                      n_samples=2000,
                      random_seed=1337)
    print_inline("Training GP ... ")
    with Stopwatch(verbose=True):    
        gp.fit(X_train, y_train)

    print_inline("Evaluating GP ... ")
    with Stopwatch(verbose=True):
        y_pred = gp.predict(X_test)
        acc = accuracy_score(y_test, y_pred)
    
    print "\nTest accuracy {0:.4f} (error {1:.2f}%)".format(acc, 100. * (1. - acc))
Esempio n. 5
0
def logreg(load_nn=True):
    """
    Output (if `load_nn` is True)
    -----------------------------
    Running 'logreg'
    Loading data ...
    Loading NN ...
    Extracting feature vectors ... Elapsed time: 12.054 sec
    Training LogReg ... Total number of parameters:  1290
    Train on 49999 samples, validate on 10001 samples

    Epoch   1/750  early stopping after 50 ................................
    elapsed:  0.70 sec - loss: 0.009 - acc.: 0.9989 - val. loss: 0.008 - val. acc.: 0.9988
    Epoch   2/750  early stopping after 50 ................................
    elapsed:  2.13 sec - loss: 0.008 - acc.: 0.9991 - val. loss: 0.009 - val. acc.: 0.9986
    Epoch   3/750  early stopping after 50 ................................
    elapsed:  3.67 sec - loss: 0.008 - acc.: 0.9991 - val. loss: 0.009 - val. acc.: 0.9986

    (...)

    Epoch  89/750  early stopping after 3 ................................
    elapsed: 59.28 sec - loss: 0.009 - acc.: 0.9992 - val. loss: 0.014 - val. acc.: 0.9979
    Epoch  90/750  early stopping after 2 ................................
    elapsed: 59.92 sec - loss: 0.009 - acc.: 0.9992 - val. loss: 0.015 - val. acc.: 0.9977
    Epoch  91/750  early stopping after 1 ................................
    elapsed: 60.57 sec - loss: 0.009 - acc.: 0.9994 - val. loss: 0.013 - val. acc.: 0.9985
    Elapsed time: 60.960 sec
    Evaluating LogReg ... Elapsed time: 0.057 sec

    Test accuracy 0.9899 (error 1.01%)
    """
    print "Running 'logreg'"
    print "Loading data ..."
    X_train, y_train = load_mnist(mode='train', path='data/')
    X_test, y_test = load_mnist(mode='test', path='data/')
    X_train /= 255.
    X_test /= 255.
    y_test = one_hot(y_test)

    if load_nn:
        print "Loading NN ..."
        nn = load_model('models/nn.json')
    else:
        nn = _train_nn(X_train.copy(), y_train.copy())

    print_inline("Extracting feature vectors ... ")
    with Stopwatch(verbose=True):
        nn.forward_pass(X_train)
        X_train = leaky_relu(nn.layers[13]._last_input)
        nn.forward_pass(X_test)
        X_test = leaky_relu(nn.layers[13]._last_input)    

    tts = TrainTestSplitter(shuffle=True, random_seed=1337)
    train, val = tts.split(y_train, train_ratio=50005./60000., stratify=True)
    X_val = X_train[val]
    X_train = X_train[train]
    y_val = one_hot(y_train[val])
    y_train = one_hot(y_train[train])

    logreg = LogisticRegression(n_batches=32,
                                L2=0.000316,
                                random_seed=1337,
                                optimizer_params=dict(
                                    learning_rate=0.001,
                                    max_epochs=750,
                                    plot=False,
                                    early_stopping=50,
                                verbose=True))
    print_inline("Training LogReg ... ")
    with Stopwatch(verbose=True):        
        logreg.fit(X_train, y_train, X_val=X_val, y_val=y_val)

    print_inline("Evaluating LogReg ... ")
    with Stopwatch(verbose=True):
        y_pred = logreg.predict(X_test)
        acc = accuracy_score(y_test, y_pred)
        
    print "\nTest accuracy {0:.4f} (error {1:.2f}%)".format(acc, 100. * (1. - acc))
Esempio n. 6
0
def _train_nn(X, y):
    """
    Parameters
    ----------
    X : training data
    y : training labels (not one-hot encoded!)

    Output
    ------
    Running '_train_nn'
    Applying augmentation ... Elapsed time: 112.495 sec
    Training NN ...
    Total number of parameters:  3142008
    Train on 290000 samples, validate on 10000 samples

    Epoch  1/42 ..........................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    elapsed: 327.3 sec - loss: 0.850 - acc.: 0.8904 - val. loss: 0.386 - val. acc.: 0.8889

    (...)

    elapsed: 15714 sec - loss: 0.013 - acc.: 0.9971 - val. loss: 0.040 - val. acc.: 0.9937
    Epoch 42/42 ..........................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    ......................................................................................
    elapsed: 16100 sec - loss: 0.013 - acc.: 0.9980 - val. loss: 0.038 - val. acc.: 0.9948
    Left '_train_nn'
    """
    print "Running '_train_nn'"

    aug = RandomAugmentator(transform_shape=(28, 28), random_seed=1337)
    aug.add('RandomRotate', angle=(-5., 7.))
    aug.add('RandomGaussian', sigma=(0., 0.5))
    aug.add('RandomShift', x_shift=(-1, 1), y_shift=(-1, 1))
    
    print_inline("Applying augmentation ... ")
    with Stopwatch(verbose=True):
        X = X.astype(np.float32)
        X = aug.transform(X, 4)
        y = np.repeat(y, 5)

    train, test = TrainTestSplitter(shuffle=True, random_seed=1337).split(y, train_ratio=29./30.)
    X_train = X[train]
    y_train = y[train]
    y_train = one_hot(y_train)
    X_val = X[test]
    y_val = y[test]
    y_val = one_hot(y_val)

    nn = NNClassifier(layers=[
                          FullyConnected(1337),
                          Activation('leaky_relu'),
                          Dropout(0.05),
                          FullyConnected(911),
                          Activation('leaky_relu'),
                          Dropout(0.1),
                          FullyConnected(666),
                          Activation('leaky_relu'),
                          Dropout(0.),
                          FullyConnected(333),
                          Activation('leaky_relu'),
                          Dropout(0.),
                          FullyConnected(128),
                          Activation('leaky_relu'),
                          Dropout(0.),
                          FullyConnected(10),
                          Activation('softmax')
                      ],
                      n_batches=1024,
                      shuffle=True,
                      random_seed=1337,
                      save_weights=False,
                      optimizer_params=dict(
                          max_epochs=42,
                          # early_stopping=12,
                          verbose=True,
                          plot=False,
                          # plot_dirpath='tmp/learning_curves{0}/'.format(i),
                          learning_rate=5e-5
                      ))

    print "Training NN ..."
    nn.fit(X_train, y_train, X_val=X_val, y_val=y_val)

    print "Saving NN to file ..."
    nn.save('models/nn.json')

    print "Left '_train_nn'"
    return nn