def trainRF(x_train, x_test, y_train, y_test, path): rf = model_zoo.RF('RF') rf.build(x_train, y_train, path, n_estimators=200, max_depth=6) rf.modelEvaluate(x_test, y_test, path) rf.featureImportance(x_train, path) ml.modelDump(rf, path + "rf.txt") return rf
def trainDT(x_train, x_test, y_train, y_test, path): dt = model_zoo.DecisionTree('dt') dt.build(x_train, y_train, path, max_depth=10) dt.modelEvaluate(x_test, y_test, path) dt.saveTree(path) ml.modelDump(dt, path + 'dt.txt') return dt
def trainSVM(x_train, x_test, y_train, y_test, path): svm = model_zoo.SVM('SVM') svm.build(x_train, y_train, path, C=10.0, kernel='rbf', class_weight=np.asarray([1.0, 10.0]), gamma=1, shrinking=True, probability=True) svm.modelEvaluate(x_test, y_test, path) ml.modelDump(svm, path + "SVM.txt") return svm
def trainLasso(x_train, x_test, y_train, y_test, path): lasso = model_zoo.lasso('lasso') lasso.build(x_train, y_train, path, penalty='l1', C=1, class_weight={ 0: 1, 1: 20 }, max_iter=100) lasso.modelEvaluate(x_test, y_test, path) # lasso.top_probality(x_test,path) ml.modelDump(lasso, path + "lasso.txt") return lasso
def trainGBDT(x_train, x_test, y_train, y_test, path): GBDT = model_zoo.GBDT('GBDT') GBDT.build(x_train, y_train, path, subsample=0.7) GBDT.modelEvaluate(x_test, y_test, path) ml.modelDump(GBDT, path + "gbdt.txt") return GBDT