def main(): # Load the dataset X, y = datasets.make_moons(n_samples=300, noise=0.08, shuffle=False) # Cluster the data using DBSCAN clf = DBSCAN(eps=0.17, min_samples=5) y_pred = clf.predict(X) # Project the data onto the 2 primary principal components p = Plot() p.plot_in_2d(X, y_pred, title="DBSCAN") p.plot_in_2d(X, y, title="Actual Clustering")
def main(): # Load the dataset X, y = datasets.make_blobs() # Cluster the data using K-Medoids clf = PAM(k=3) y_pred = clf.predict(X) # Project the data onto the 2 primary principal components p = Plot() p.plot_in_2d(X, y_pred, title="PAM Clustering") p.plot_in_2d(X, y, title="Actual Clustering")
def main(): data = datasets.load_digits() X = normalize(data.data) y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, seed=1) # Optimization method for finding weights that minimizes loss optimizer = RMSprop(learning_rate=0.01) # Perceptron clf = Perceptron(n_iterations=5000, activation_function=ELU, optimizer=optimizer, early_stopping=True, plot_errors=True) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # Reduce dimension to two using PCA and plot the results Plot().plot_in_2d(X_test, y_pred, title="Perceptron", accuracy=accuracy, legend_labels=np.unique(y))
def main(): # Load dataset data = datasets.load_iris() X = normalize(data.data[data.target != 0]) y = data.target[data.target != 0] y[y == 1] = 0 y[y == 2] = 1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, seed=1) clf = LogisticRegression(gradient_descent=True) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # Reduce dimension to two using PCA and plot the results Plot().plot_in_2d(X_test, y_pred, title="Logistic Regression", accuracy=accuracy)
def main(): data = datasets.load_digits() X = normalize(data.data) y = data.target # Convert the nominal y values to binary y = to_categorical(y) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, seed=1) # MLP clf = MultilayerPerceptron(n_hidden=16, n_iterations=1000, learning_rate=0.01) clf.fit(X_train, y_train) y_pred = np.argmax(clf.predict(X_test), axis=1) y_test = np.argmax(y_test, axis=1) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # Reduce dimension to two using PCA and plot the results Plot().plot_in_2d(X_test, y_pred, title="Multilayer Perceptron", accuracy=accuracy, legend_labels=np.unique(y))
def main(): data = datasets.load_digits() X = normalize(data.data) y = data.target # One-hot encoding of nominal y-values y = to_categorical(y) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, seed=1) # Perceptron clf = Perceptron(n_iterations=5000, learning_rate=0.001, loss=CrossEntropy, activation_function=Sigmoid) clf.fit(X_train, y_train) y_pred = np.argmax(clf.predict(X_test), axis=1) y_test = np.argmax(y_test, axis=1) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # Reduce dimension to two using PCA and plot the results Plot().plot_in_2d(X_test, y_pred, title="Perceptron", accuracy=accuracy, legend_labels=np.unique(y))
def main(): print("-- XGBoost --") data = datasets.load_iris() X = data.data y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, seed=2) clf = XGBoost(debug=True) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) Plot().plot_in_2d(X_test, y_pred, title="XGBoost", accuracy=accuracy, legend_labels=data.target_names)
def main(): data = datasets.load_digits() X = data.data y = data.target digit1 = 1 digit2 = 8 idx = np.append(np.where(y == digit1)[0], np.where(y == digit2)[0]) y = data.target[idx] # Change labels to {-1, 1} y[y == digit1] = -1 y[y == digit2] = 1 X = data.data[idx] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5) # Adaboost classification with 5 weak classifiers clf = Adaboost(n_clf=5) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # Reduce dimensions to 2d using pca and plot the results Plot().plot_in_2d(X_test, y_pred, title="Adaboost", accuracy=accuracy)
def main(): data = datasets.load_digits() X = normalize(data.data) y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, seed=1) # Perceptron clf = Perceptron(n_iterations=5000, learning_rate=0.001, activation_function=Sigmoid) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # Reduce dimension to two using PCA and plot the results Plot().plot_in_2d(X_test, y_pred, title="Perceptron", accuracy=accuracy, legend_labels=np.unique(y))
def calcPreceptronOrg(self, X_train, X_test, y_train, y_test, file_nm): y = np.concatenate((y_train, y_test), axis=0) y = to_categorical(y) y_train = to_categorical(y_train) y_test = to_categorical(y_test) # Perceptron clf = Perceptron(n_iterations=5000, learning_rate=0.001, loss=SquareLoss, activation_function=Sigmoid) clf.fit(X_train, y_train) y_pred = np.argmax(clf.predict(X_test), axis=1) y_test = np.argmax(y_test, axis=1) accuracy = accuracy_score(y_test, y_pred) # print ("Accuracy:", accuracy) # Reduce dimension to two using PCA and plot the results Plot().plot_in_2d(X_test, y_pred, title=file_nm, accuracy=accuracy, legend_labels=np.unique(y)) return accuracy
def main(): optimizer = Adam() #----- # MLP #----- data = datasets.load_digits() X = data.data y = data.target # Convert to one-hot encoding y = to_categorical(y.astype("int")) n_samples, n_features = X.shape n_hidden = 512 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, seed=1) clf = NeuralNetwork(optimizer=optimizer, loss=CrossEntropy, validation_data=(X_test, y_test)) clf.add(Dense(n_hidden, input_shape=(n_features,))) clf.add(Activation('leaky_relu')) clf.add(Dense(n_hidden)) clf.add(Activation('leaky_relu')) clf.add(Dropout(0.25)) clf.add(Dense(n_hidden)) clf.add(Activation('leaky_relu')) clf.add(Dropout(0.25)) clf.add(Dense(n_hidden)) clf.add(Activation('leaky_relu')) clf.add(Dropout(0.25)) clf.add(Dense(10)) clf.add(Activation('softmax')) print () clf.summary(name="MLP") train_err, val_err = clf.fit(X_train, y_train, n_epochs=50, batch_size=256) # Training and validation error plot n = len(train_err) training, = plt.plot(range(n), train_err, label="Training Error") validation, = plt.plot(range(n), val_err, label="Validation Error") plt.legend(handles=[training, validation]) plt.title("Error Plot") plt.ylabel('Error') plt.xlabel('Iterations') plt.show() _, accuracy = clf.test_on_batch(X_test, y_test) print ("Accuracy:", accuracy) # Reduce dimension to 2D using PCA and plot the results y_pred = np.argmax(clf.predict(X_test), axis=1) Plot().plot_in_2d(X_test, y_pred, title="Multilayer Perceptron", accuracy=accuracy, legend_labels=range(10))
def main(): X, y = datasets.make_classification(n_samples=1000, n_features=10, n_classes=4, n_clusters_per_class=1, n_informative=2) data = datasets.load_digits() X = normalize(data.data) y = data.target y = to_categorical(y.astype("int")) # Model builder def model_builder(n_inputs, n_outputs): model = NeuralNetwork(optimizer=Adam(), loss=CrossEntropy) model.add(Dense(16, input_shape=(n_inputs, ))) model.add(Activation('relu')) model.add(Dense(n_outputs)) model.add(Activation('softmax')) return model # Print the model summary of a individual in the population print("") model_builder(n_inputs=X.shape[1], n_outputs=y.shape[1]).summary() population_size = 100 n_generations = 3000 mutation_rate = 0.01 print("Population Size: %d" % population_size) print("Generations: %d" % n_generations) print("Mutation Rate: %.2f" % mutation_rate) print("") X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, seed=1) model = Neuroevolution(population_size=population_size, mutation_rate=mutation_rate, model_builder=model_builder) model = model.evolve(X_train, y_train, n_generations=n_generations) loss, accuracy = model.test_on_batch(X_test, y_test) # Reduce dimension to 2D using PCA and plot the results y_pred = np.argmax(model.predict(X_test), axis=1) Plot().plot_in_2d(X_test, y_pred, title="Evolutionary Evolved Neural Network", accuracy=accuracy, legend_labels=range(y.shape[1]))
def main(): X, y = datasets.make_classification(n_samples=1000, n_features=10, n_classes=4, n_clusters_per_class=1, n_informative=2) data = datasets.load_iris() X = normalize(data.data) y = data.target y = to_categorical(y.astype("int")) # Model builder def model_builder(n_inputs, n_outputs): model = NeuralNetwork(optimizer=Adam(), loss=CrossEntropy) model.add(Dense(16, input_shape=(n_inputs,))) model.add(Activation('relu')) model.add(Dense(n_outputs)) model.add(Activation('softmax')) return model # Print the model summary of a individual in the population print ("") model_builder(n_inputs=X.shape[1], n_outputs=y.shape[1]).summary() population_size = 100 n_generations = 10 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, seed=1) inertia_weight = 0.8 cognitive_weight = 0.8 social_weight = 0.8 print ("Population Size: %d" % population_size) print ("Generations: %d" % n_generations) print ("") print ("Inertia Weight: %.2f" % inertia_weight) print ("Cognitive Weight: %.2f" % cognitive_weight) print ("Social Weight: %.2f" % social_weight) print ("") model = ParticleSwarmOptimizedNN(population_size=population_size, inertia_weight=inertia_weight, cognitive_weight=cognitive_weight, social_weight=social_weight, max_velocity=5, model_builder=model_builder) model = model.evolve(X_train, y_train, n_generations=n_generations) loss, accuracy = model.test_on_batch(X_test, y_test) print ("Accuracy: %.1f%%" % float(100*accuracy)) # Reduce dimension to 2D using PCA and plot the results y_pred = np.argmax(model.predict(X_test), axis=1) Plot().plot_in_2d(X_test, y_pred, title="Particle Swarm Optimized Neural Network", accuracy=accuracy, legend_labels=range(y.shape[1]))
def main(): data = datasets.load_digits() X = normalize(data.data) y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4) clf = NB() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print('Accuracy : {}'.format(accuracy)) Plot().plot_in_2d(X_test, y_pred, title="Naive Bayes", accuracy=accuracy, legend_labels=data.target_names)
def main(): data = datasets.load_iris() X = normalize(data.data) y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33) clf = KNN(k=5) y_pred = clf.predict(X_test, X_train, y_train) accuracy = accuracy_score(y_test, y_pred) print ("Accuracy:", accuracy) # Reduce dimensions to 2d using pca and plot the results Plot().plot_in_2d(X_test, y_pred, title="K Nearest Neighbors", accuracy=accuracy, legend_labels=data.target_names)
def main(): data = datasets.load_digits() X = normalize(data.data) y = data.target n_samples, n_features = np.shape(X) n_hidden, n_output = 256, 10 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, seed=1) optimizer = GradientDescent(learning_rate=0.001, momentum=0.9) # MLP clf = MultilayerPerceptron(n_iterations=1000, batch_size=128, optimizer=optimizer, loss=CrossEntropy, validation_data=(X_test, y_test)) clf.add(DenseLayer(n_inputs=n_features, n_units=n_hidden)) clf.add(DropoutLayer(p=0.5)) clf.add(DenseLayer(n_inputs=n_hidden, n_units=n_hidden)) clf.add(DropoutLayer(p=0.5)) clf.add(DenseLayer(n_inputs=n_hidden, n_units=n_hidden)) clf.add(DropoutLayer(p=0.5)) clf.add( DenseLayer(n_inputs=n_hidden, n_units=n_output, activation_function=Softmax)) clf.fit(X_train, y_train) clf.plot_errors() y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # Reduce dimension to two using PCA and plot the results Plot().plot_in_2d(X_test, y_pred, title="Multilayer Perceptron", accuracy=accuracy, legend_labels=np.unique(y))
def main(): # Load the dataset X, y = datasets.make_moons(n_samples=300, noise=0.08, shuffle=False) print(X.shape) # Cluster the data using Agnes agnes_cluster = AGNES(10) centroids, labels = agnes_cluster.fit(X) p = Plot() p.plot_in_2d(X, labels, "Preds") p.plot_in_2d(X, y, "Actual")
def main(): print("-- Gradient Boosting Classification --") data = datasets.load_iris() X = data.data y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4) clf = GradientBoostingClassifier(debug=True) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) Plot().plot_in_2d(X_test, y_pred, title="Gradient Boosting", accuracy=accuracy, legend_labels=data.target_names) print("-- Gradient Boosting Regression --") X, y = datasets.make_regression(n_features=1, n_samples=150, bias=0, noise=5) X_train, X_test, y_train, y_test = train_test_split(standardize(X), y, test_size=0.5) clf = GradientBoostingRegressor(debug=True) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("Mean Squared Error:", mse) # Plot the results plt.scatter(X_test[:, 0], y_test, color='black') plt.scatter(X_test[:, 0], y_pred, color='green') plt.title("Gradient Boosting Regression (%.2f MSE)" % mse) plt.show()
def main(): data = datasets.load_digits() X = data.data y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, seed=2) clf = RandomForest(n_estimators=100) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print ("Accuracy:", accuracy) Plot().plot_in_2d(X_test, y_pred, title="Random Forest", accuracy=accuracy, legend_labels=data.target_names)
def main(): # Load the dataset X, y = datasets.make_blobs() # Cluster the data clf = GaussianMixtureModel(k=3) y_pred = clf.predict(X) p = Plot() p.plot_in_2d(X, y_pred, title="GMM Clustering") p.plot_in_2d(X, y, title="Actual Clustering")
def main(): # Load the dataset X , y = datasets.make_moons(n_samples=300, noise=0.08, shuffle=False) # Cluster the data using DBSCAN kmedoid_cluster = KMediod(X , 2 , 1) medoids , labels = kmedoid_cluster.fit(10, max_steps=1000) print(medoids , labels) p = Plot() p.plot_in_2d(X , labels , "Preds") p.plot_in_2d(X , y , "Actual")
def main(): data = datasets.load_iris() X = data.data y = data.target X = X[y != 2] y = y[y != 2] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) lda = LDA() lda.fit(X_train, y_train) y_pred = lda.predict(X_test) accuracy = accuracy_score(X_test, y_pred) print("Accuracy : {}".format(accuracy)) Plot().plot_in_2d(X_test, y_test, title="LDA", accuracy=accuracy)
def main(): # Load the dataset X, y = datasets.make_moons(n_samples=300, noise=0.1, shuffle=False) # Cluster the data using DBSCAN clf = DBSCAN(eps=0.17, min_samples=5) y_pred = clf.predict(X) # Project the data onto the 2 primary principal components p = Plot() p.plot_in_2d(X, y_pred, title="DBSCAN") p.plot_in_2d(X, y, title="Actual Clustering")
def main(): # Load the dataset X, y = datasets.make_blobs() # Cluster the data using K-Means clf = KMeans(k=3) y_pred = clf.predict(X) # Project the data onto the 2 primary principal components p = Plot() p.plot_in_2d(X, y_pred, title="K-Means Clustering") p.plot_in_2d(X, y, title="Actual Clustering")
def runGradientBoostingClassifier(): data = datasets.load_iris() X = data.data y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4) clf = GradientBoostingClassifier() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = np.mean(y_test == y_pred) print("Accuracy:", accuracy) Plot().plot_in_2d(X_test, y_pred, title="Gradient Boosting", accuracy=accuracy, legend_labels=data.target_names)
def main(): data = datasets.load_iris() X = normalize(data.data) y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5) clf = NaiveBayes() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # Reduce dimension to two using PCA and plot the results Plot().plot_in_2d(X_test, y_pred, title="Naive Bayes", accuracy=accuracy, legend_labels=data.target_names)
def main(): data = datasets.load_iris() X = normalize(data.data[data.target != 0]) y = data.target[data.target != 0] y[y == 1] = -1 y[y == 2] = 1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33) clf = SupportVectorMachine(kernel=polynomial_kernel, power=4, coef=1) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # Reduce dimension to two using PCA and plot the results Plot().plot_in_2d(X_test, y_pred, title="Support Vector Machine", accuracy=accuracy)
def main(): # Load the dataset data = datasets.load_iris() X = data.data y = data.target # Three -> two classes X = X[y != 2] y = y[y != 2] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33) # Fit and predict using LDA lda = LDA() lda.fit(X_train, y_train) y_pred = lda.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) Plot().plot_in_2d(X_test, y_pred, title="LDA", accuracy=accuracy)
def main(): print ("-- Classification Tree --") data = datasets.load_iris() X = data.data y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4) clf = ClassificationTree() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print ("Accuracy:", accuracy) Plot().plot_in_2d(X_test, y_pred, title="Decision Tree", accuracy=accuracy, legend_labels=data.target_names)
def main(): print("-- Gradient Boosting Classification --") data = datasets.load_iris() X = data.data y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4) clf = GradientBoostingClassifier(debug=True) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) Plot().plot_in_2d(X_test, y_pred, title="Gradient Boosting", accuracy=accuracy, legend_labels=data.target_names)
def main(): #---------- # Conv Net #---------- optimizer = Adam() data = datasets.load_digits() X = data.data y = data.target # Convert to one-hot encoding y = to_categorical(y.astype("int")) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, seed=1) # Reshape X to (n_samples, channels, height, width) X_train = X_train.reshape((-1, 1, 8, 8)) X_test = X_test.reshape((-1, 1, 8, 8)) clf = NeuralNetwork(optimizer=optimizer, loss=CrossEntropy, validation_data=(X_test, y_test)) clf.add( Conv2D(n_filters=16, filter_shape=(3, 3), stride=1, input_shape=(1, 8, 8), padding='same')) clf.add(Activation('relu')) clf.add(Dropout(0.25)) clf.add(BatchNormalization()) clf.add(Conv2D(n_filters=32, filter_shape=(3, 3), stride=1, padding='same')) clf.add(Activation('relu')) clf.add(Dropout(0.25)) clf.add(BatchNormalization()) clf.add(Flatten()) clf.add(Dense(256)) clf.add(Activation('relu')) clf.add(Dropout(0.4)) clf.add(BatchNormalization()) clf.add(Dense(10)) clf.add(Activation('softmax')) print() clf.summary(name="ConvNet") train_err, val_err = clf.fit(X_train, y_train, n_epochs=50, batch_size=256) # Training and validation error plot n = len(train_err) training, = plt.plot(range(n), train_err, label="Training Error") validation, = plt.plot(range(n), val_err, label="Validation Error") plt.legend(handles=[training, validation]) plt.title("Error Plot") plt.ylabel('Error') plt.xlabel('Iterations') plt.show() _, accuracy = clf.test_on_batch(X_test, y_test) print("Accuracy:", accuracy) y_pred = np.argmax(clf.predict(X_test), axis=1) X_test = X_test.reshape(-1, 8 * 8) # Reduce dimension to 2D using PCA and plot the results Plot().plot_in_2d(X_test, y_pred, title="Convolutional Neural Network", accuracy=accuracy, legend_labels=range(10))
def main(): data = datasets.load_digits() X = data.data y = data.target n_samples = np.shape(X) n_hidden = 512 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, seed=1) optimizer = Adam() #----- # MLP #----- # clf = NeuralNetwork(optimizer=optimizer, # loss=CrossEntropy, # validation_data=(X_test, y_test)) # clf.add(Dense(n_hidden, input_shape=(8*8,))) # clf.add(Activation('leaky_relu')) # clf.add(Dense(n_hidden)) # clf.add(Activation('leaky_relu')) # clf.add(Dropout(0.25)) # clf.add(Dense(n_hidden)) # clf.add(Activation('leaky_relu')) # clf.add(Dropout(0.25)) # clf.add(Dense(n_hidden)) # clf.add(Activation('leaky_relu')) # clf.add(Dropout(0.25)) # clf.add(Dense(10)) # clf.add(Activation('softmax')) # print () # clf.summary(name="MLP") # clf.fit(X_train, y_train, n_epochs=50, batch_size=256) # clf.plot_errors() # y_pred = np.argmax(clf.predict(X_test), axis=1) # accuracy = accuracy_score(y_test, y_pred) # print ("Accuracy:", accuracy) #---------- # Conv Net #---------- X_train = X_train.reshape((-1, 1, 8, 8)) X_test = X_test.reshape((-1, 1, 8, 8)) clf = NeuralNetwork(optimizer=optimizer, loss=CrossEntropy, validation_data=(X_test, y_test)) clf.add( Conv2D(n_filters=16, filter_shape=(3, 3), input_shape=(1, 8, 8), padding='same')) clf.add(Activation('relu')) clf.add(Dropout(0.25)) clf.add(BatchNormalization()) clf.add(Conv2D(n_filters=32, filter_shape=(3, 3), padding='same')) clf.add(Activation('relu')) clf.add(Dropout(0.25)) clf.add(BatchNormalization()) clf.add(Flatten()) clf.add(Dense(256)) clf.add(Activation('relu')) clf.add(Dropout(0.5)) clf.add(BatchNormalization()) clf.add(Dense(10)) clf.add(Activation('softmax')) print() clf.summary(name="ConvNet") train_err, val_err = clf.fit(X_train, y_train, n_epochs=50, batch_size=256) # Training and validation error plot n = len(train_err) training, = plt.plot(range(n), train_err, label="Training Error") validation, = plt.plot(range(n), val_err, label="Validation Error") plt.legend(handles=[training, validation]) plt.title("Error Plot") plt.ylabel('Error') plt.xlabel('Iterations') plt.show() # Make a prediction of the test set y_pred = np.argmax(clf.predict(X_test), axis=1) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) X_test = X_test.reshape(-1, 8 * 8) # Reduce dimension to 2D using PCA and plot the results Plot().plot_in_2d(X_test, y_pred, title="Convolutional Neural Network", accuracy=accuracy, legend_labels=np.unique(y))