Esempio n. 1
0
    for realization in range(20):
        train, test = split_random(base, train_percentage=.8)
        train, train_val = split_random(train, train_percentage=.8)

        x_train = train[:, :4]
        y_train = train[:, 4:]

        x_train_val = train_val[:, :4]
        y_train_val = train_val[:, 4:]

        x_test = test[:, :4]
        y_test = test[:, 4:]

        validation_alphas = [0.15]
        hidden = 3 * np.arange(1, 5)
        simple_net = MultiLayerPerceptron(M, C, epochs=10000)
        simple_net.fit(x_train, y_train, x_train_val=x_train_val, y_train_val=y_train_val, alphas=validation_alphas, hidden=hidden)

        y_out_simple_net = simple_net.predict(x_test, bias=True)

        y_test = simple_net.predicao(y_test)


        metrics_calculator = metric(y_test, y_out_simple_net, types=['ACCURACY', 'precision', 'recall', 'f1_score'])
        metric_results = metrics_calculator.calculate(average='macro')
        print(metric_results)

        results['cf'].append((metric_results['ACCURACY'], metrics_calculator.confusion_matrix(list(y_test),
                                                                                              y_out_simple_net, labels=[0,1,2])))

        results['alphas'].append(simple_net.learning_rate)
Esempio n. 2
0
        train, test = split_random(df, train_percentage=.8)
        train, train_val = split_random(train, train_percentage=.8)

        x_train = train[features]
        y_train = train[target].to_numpy().reshape(train[target].shape[0], 1)

        x_train_val = train_val[features]
        y_train_val = train_val[target]

        x_test = test[features]
        y_test = test[target]
        y_test.to_numpy().reshape(y_test.shape[0], 1)

        validation_alphas = [0.008]
        hidden = [8, 10, 12, 16]
        simple_net = MultiLayerPerceptron(M, C, epochs=epochs, Regressao=True)
        simple_net.fit(x_train.to_numpy(),
                       y_train,
                       x_train_val=x_train_val.to_numpy(),
                       y_train_val=y_train_val,
                       alphas=validation_alphas,
                       hidden=hidden,
                       validation=False)

        y_out = simple_net.predict(x_test, bias=True)

        metrics_calculator = metric(y_test, y_out, types=['MSE', 'RMSE', 'R2'])
        metric_results = metrics_calculator.calculate()
        print(metric_results)

        results['error_per_epoch'].append(
Esempio n. 3
0
            # ------------------------------ x and y for validation -----------------------------------

            # x_train_val = train_val[features]
            # y_train_val = train_val[different_target]

            # ------------------------------ x and y for test ------------------------------------------

            x_test = test[features]
            y_test = test[different_target]
            y_test.to_numpy().reshape(y_test.shape[0], 1)

            # ---------------------------------- modeling ----------------------------------------------
            validation_alphas = [0.15]
            hidden = 4 * np.arange(1, 5)
            simple_net = MultiLayerPerceptron(9, C, epochs=1000, Regressao=True, hidden_layer_neurons=12, learning_rate=0.15)
            simple_net.fit(x_train.to_numpy(), y_train,
                           x_train_val=[], y_train_val=[],
                           alphas=validation_alphas,
                           hidden=hidden,
                           validation=False)

            y_out = simple_net.predict(x_test, bias=True)

            metrics_calculator = metric(y_test, y_out, types=['MSE', 'RMSE'])
            metric_results = metrics_calculator.calculate()
            print(metric_results)

            results['alphas'].append(simple_net.lr)
            results['realization'].append(realization)
            for type in ['MSE', 'RMSE']:
Esempio n. 4
0
        train, train_val = split_random(train, train_percentage=.8)

        x_train = train[['x1']]
        y_train = train[['y']]

        x_train_val = train_val[['x1']]
        y_train_val = train_val[['y']]

        x_test = test[['x1']]
        y_test = test[['y']]

        validation_alphas = [0.15]
        hidden = 3 * np.arange(1, 6)
        simple_net = MultiLayerPerceptron(M,
                                          C,
                                          epochs=epochs,
                                          Regressao=True,
                                          learning_rate=0.05,
                                          hidden_layer_neurons=12)
        simple_net.fit(x_train,
                       y_train.to_numpy(),
                       x_train_val=x_train_val,
                       y_train_val=y_train_val.to_numpy(),
                       alphas=validation_alphas,
                       hidden=hidden)

        y_out = simple_net.predict(x_test, bias=True)

        metrics_calculator = metric(y_test, y_out, types=['MSE', 'RMSE', 'R2'])
        metric_results = metrics_calculator.calculate()
        print(metric_results)